Sites of Biological Significance in Knox

Volume

Graeme S. Lorimer, PhD

Sites of Biological Significance in Knox

Volume 1

A Report to Knox City Council

by

Graeme S. Lorimer, PhD

of

Biosphere Pty Ltd ABN 28 097 295 504 www.biosphere.net.au 13 Kyamba Ct, Bayswater North, Vic. 3153

Version 1.0.0, 20 October, 2004

First published 2004 *'Sites of Biological Significance in Knox'*, Vol.1 of two volumes by Graeme S. Lorimer. Published by Knox City Council, Wantirna South, Victoria.

CONTENTS

1. Introduction1.1 Purpose of the Study1.2 How to Use This Report1.3 Background about the Municipality of Knox1.4 Governmental Context of This Study1.5 The Study Approach62. Scientific Methods2.1 Extent of Coverage2.2 Survey of Literature and Pre-existing Information72.3 Finding Potential Sites of Significance	
1.2How to Use This Report11.3Background about the Municipality of Knox21.4Governmental Context of This Study31.5The Study Approach62.Scientific Methods72.1Extent of Coverage72.2Survey of Literature and Pre-existing Information7)
1.3Background about the Municipality of Knox21.4Governmental Context of This Study31.5The Study Approach62.Scientific Methods72.1Extent of Coverage72.2Survey of Literature and Pre-existing Information7)
1.3Background about the Municipality of Knox21.4Governmental Context of This Study31.5The Study Approach62.Scientific Methods72.1Extent of Coverage72.2Survey of Literature and Pre-existing Information7)
1.4 Governmental Context of This Study 3 1.5 The Study Approach 6 2. Scientific Methods 7 2.1 Extent of Coverage 7 2.2 Survey of Literature and Pre-existing Information 7)
1.5 The Study Approach6 2. Scientific Methods 72.1 Extent of Coverage72.2 Survey of Literature and Pre-existing Information7)
2. Scientific Methods 2.1 Extent of Coverage 7 2.2 Survey of Literature and Pre-existing Information 7)
2.1 Extent of Coverage72.2 Survey of Literature and Pre-existing Information7)
2.2 Survey of Literature and Pre-existing Information 7	
2.3 Finding Potential Sites of Significance 9	
2.4 Site Inspections 9	
2.4.1 Delineation of Vegetation Types 10	
2.4.2 Detection and Recording of Plant Species 11	
2.4.3 Weed Severity 11	
2.4.4 Vegetation Quality and Condition 12	
2.5 Incidental Records 14	ļ
2.6 Significance Ratings 14	Ļ
3. Scientific Findings	15
3.1 Bioregions 15	;
3.2 Biogeographical Zones 16	;
3.2.1 Dandenong Ranges 16	
3.2.2 Undulating Country 17	
3.2.3 Valley Floors 17	
3.2.4 Granodiorite Gullies 18	
3.2.5 Lysterfield Granodiorite 18	
3.2.6 Lysterfield Hills 18	
3.3 Habitat Types 19	
3.3.1 The Importance of Threatened EVCs in Knox 21	
3.4Plant Species21	
3.4.1 Rare or Threatened Nationally or Statewide 22	
3.4.2 Rare or Threatened in Knox233.4.3 Environmental Weeds25	
3.5 Fauna 26	
3.5.1 Birds 26 3.5.2 Mammals 26	
3.5.2 Mammals 26 3.5.3 Frogs 27	
3.5.4 Reptiles 27	
3.5.5 Fishes 27	
3.5.6 Invertebrates 28	
3.6 Sites 28	,

4.	Issues Affecting Biodiversity	30
	4.1 Protection of Habitat in Reserves	30
	4.1.1 Management Plans	30
	4.1.2 Monitoring	31
	4.2 Protection of Habitat Off Reserves	31
	4.3 Weeds	32
	4.4 Vegetation Clearing and Damage	33 34
	4.4.1 Housing Development and Construction4.4.2 Roads	34
	4.4.3 Established Residential Land	35
	4.4.4 Dead Trees	36
	4.5 Habitat Fragmentation	36
	4.6 Dieback	37
	4.7 Fire Management	38
	4.8 Feral Animals	39
	4.9 Pets	39
	4.10 Nutrient Seepage	40
	4.11 Drainage Works and Waterway Modification	40
	4.12 Rare or threatened flora and fauna	41
	4.13 Revegetation	41
5.	Conservation Measures in the Planning Scheme	43
	5.1 State Planning Policy Framework	43
	5.1.1 Conservation of Native Flora and Fauna5.1.2 Protection of Waterways and Floodplains	43 44
	5.2 Municipal Strategic Statement	44 45
	5.3 Local Planning Policies	45 46
	5.3.1 Dandenong Foothills Policy	40 46
	5.3.2 Bushland Neighbours Policy	46
	5.4 Zones	47
	5.5 Overlays	48
	5.5.1 Environmental Significance Overlay – Schedule 1	48
	5.5.2 Environmental Significance Overlay – Schedule 2	49
	5.5.3 Vegetation Protection Overlay	49
	5.6 Administration of the Planning Scheme 5.6.1 Public Promotion	50 50
	5.6.2 Provision of Information to Permit Applicants	50 50
	5.6.3 Referral and Expert Environmental Opinion	50
	5.6.4 Deciding Planning Permit Applications	51
	5.6.5 Future Review of Significant Sites	53
6.	List of Recommendations	54
Bi	bliography	59
A	opendix A – Vegetation Communities in Knox	62
A	opendix B – Indigenous Plant Species of Knox	81
A	opendix C – Environmental Weeds of Knox	92
A	opendix D – Fauna Species of Knox	95

Birds	95
Mammals	99
Frogs	100
Reptiles	101
Fishes	101
Butterflies	102
Notable Other Invertebrates	102
Appendix E – Example Bushland Neighbour Policy	103
Appendix F – Suggested ESO1 Schedule	105
Appendix G – Suggested ESO2 Schedule	110
Appendix H – Suggested VPO Schedule	115
Glossary and Abbreviations	117

Acknowledgments

The author would like to express sincere thanks to:

- Luke Murphy, who was Knox City Council's project manager for this project.
- Kathryn Lorimer and David Lorimer for assistance with report production.
- Steve Hines (Knox City Council) and Lisa Riddle (Planisphere) for ideas on planning.
- Jan Jordan of Boronia for expertly gathered and prepared data on butterflies, moths and bees.
- Mark Fanthorpe, I. Rainbow, L. Living & R. Sinclair for fauna observations at and near Gilmour Park.
- Andrew Paget for providing a copy of his 1985 B.App.Sc. thesis, with its copious botanical observations.
- The Knox Environment Society for contributing flora and fauna observations and project information.
- The U3A Knox Birdwatching Group for detailed bird observations in various parts of Knox, 1996-2000.
- Many landowners who granted permission to visit their properties.
- ...and Rik Brown, who did some of the fieldwork and draft site descriptions:

RIK BROWN Botanical Consultant 113 Badger Weir Road, Healesville Vic. 3777 Phone: (03) 5962 4332 rikbrown@bigpond.com

The aerial photography in Volume 2 was supplied by Sinclair Knight Merz (SKM), 2003.

Executive Summary

Purpose

The Sites of Biological Significance study was specifically foreshadowed in the '*Knox 2001 – 2010 Sustainable City Strategy*'. The study has three main purposes:

- (1) To gain a broad overview of native vegetation and wildlife in Knox, including their biological significance, threats and opportunities for improvements;
- (2) To identify, carefully assess and document all sites in Knox that are so important to native flora and fauna that they warrant special recognition and protection; and
- (3) To recommend ways of looking after, enhancing and monitoring Knox's natural vegetation and other habitat, including through amendments to the Knox Planning Scheme.

Some vegetation in Knox is significant for reasons other than its biological importance; e.g. trees that are historical landmarks or particularly beautiful. These cases can involve natural vegetation or otherwise, and are dealt with in the companion to this report called '*Knox Significant Vegetation Study*' by Environs Group Pty Ltd (published by Knox City Council, 2004).

Study Approach

The study has three main parts:

- <u>Scientific investigation</u> of the current state of nature in the municipality, including flora, fauna, ecological communities, and the sites where these things occur. Fieldwork focused on vegetation (including records of well over 20,000 observations of plants), but incidental observations of fauna were also recorded (over one thousand records). Flora and fauna records were added from sources outside the study, where those records have good credentials. The data has been analysed by computer;
- <u>Identification of issues</u> that are positively or adversely affecting the natural flora and fauna in Knox, based on the fieldwork observations; and
- <u>Recommendations</u> for improving the positive influences on the natural environment, and reducing the adverse effects. These involve the Knox Planning Scheme, public education, management of reserves, recovery plans for threatened species, and many other subjects.

Principal Findings

The study found that native vegetation or areas with indigenous tree cover occupy less than five percent of the municipality. But within this small fraction of Knox, some exciting discoveries were made.

The survey work uncovered more biologically significant sites, and more species of plants and animals, than anyone expected. The highlights were discoveries of sites of statewide biological significance that were not previously known to be significant at all. There have also been discoveries of many plant species not previously recorded in the municipality (or within tens of kilometres, in some cases).

The sites' biological significance has been assessed using the Department of Sustainability & Environment's standard, objective criteria. The sixty-two most significant sites rank at the State level (with one exception at National level), and occur on both public and private land. To find so many sites of State significance was quite unexpected.

The most common reason for sites to qualify for State significance is the presence of a vegetation type (or Ecological Vegetation Class) that is officially listed as regionally or nationally endangered, particularly Valley Heathy Forest and Swampy Woodland. Most occurrences of native vegetation in Knox include an endangered or vulnerable Ecological Vegetation Class.

The study compiled a database of almost 27,000 records that show where each plant species is found in Knox, and how abundant they are at each site. The records include 459 indigenous species (not including subspecies, varieties, hybrids and so on), of which twenty-seven can be presumed to be extinct in Knox.

Analysis of the database shows that the indigenous flora of Knox are not well conserved:

- Slightly more than half of the indigenous plant species presently found in Knox are threatened with extinction from the municipality within one or two decades. A much smaller percentage is threatened statewide. A significant proportion of the fauna species found in Knox are listed as threatened or near-threatened statewide;
- Eighty-two of the 118 sites identified in this study contain plant species that are threatened (not just rare) in Knox or more widely. The loss of any one of these eighty-two sites is likely to either render a species extinct from the municipality (or more widely), or significantly increase the risk of this happening;
- Ninety-seven plant species that are threatened in Knox (not just rare) are not found in reserves managed for conservation. This represents 22% of all extant indigenous plant species in Knox, and includes fifty-two species that are critically endangered in Knox;
- 42% of all plant species that are threatened in Knox are not found in reserves managed for conservation.

Knox is therefore at the stage where many indigenous plant species are poorly conserved and threatened with local extinction. To avoid local extinctions will require strong avoidance of removal of native vegetation in all sites of biological significance, coupled with active efforts to increase the security of the threatened species.

Some of the threatened species that are not represented in reserves are highly reliant on sites owned by government, such as schools, roadsides, utility installations or freeway reservations. In many cases, private residential land is critical.

All of the threatened Ecological Vegetation Classes in Knox are represented in reserves managed for conservation. However, occurrences outside these reserves are also highly important to conserve.

It is therefore important for Knox City Council to apply controls on land uses that raise the risk to threatened species and vegetation communities, and to make sure the controls are applied to appropriate areas. Overlays in the Knox Planning Scheme are the primary way that this can be done.

Ninety-eight sites have been identified as worthy of, and suited to, protection under the Environmental Significance Overlay (an overlay not presently used in the Knox Planning Scheme). Another fifteen sites are recommended for the Vegetation Protection Overlay. Each site is described in detail in Volume 2.

These overlays are proposed to completely replace the existing Schedules 1 and 3 of the Vegetation Protection Overlay in the planning scheme. This would not significantly change the total area covered by overlays, but there are substantial numbers of properties proposed to be relieved from overlays and others that are proposed to be covered for the first time.

At the lower end of the biological significance scale, five sites or groups of sites are not recommended for planning scheme overlays, because their vegetation is adequately protected by the baseline 'Native Vegetation Retention' provisions that appear as Clause 52.17 of planning schemes throughout Victoria.

Positive and Negative Trends

There are encouraging signs of change by the public, Council and other agencies; for example:

- Widespread planting of indigenous species to encourage wildlife and enhance the local landscape;
- Enthusiastic community participation in management of bushland reserves; and
- Council's commitments to conservation, such as its excellent management of bushland reserves and the commissioning of this report.

Council is well positioned to encourage these trends; for example, by providing practical support to 'Friends' groups that have working bees in Council reserves.

This report also establishes the need to take action immediately, because despite the positive signs on the human side, the natural environment is in decline in most of Knox. *The author regards environmental weeds as the worst threat to nature and biodiversity in Knox, followed by native vegetation removal.* Construction and widening of main roads appears likely to become a major cause of ecological deterioration in Knox in the next few years unless action is taken to avoid or minimise the loss of habitat.

It is not surprising that there have been local extinctions of plants and animals during Knox's development, but a massive increase in the rate of local extinctions could be imminent unless countermeasures are taken. The threats to these plants and animals are known and they can be overcome. It is still realistic to aim to *retain all presently existing native fauna and flora species for the indefinite future*, and this is recommended as a cornerstone goal for Council.

An Outline of the Recommendations

Chapter 6 of this volume lists 49 specific, prioritised recommendations to Council, written in such a way as to make it easy to monitor implementation. In addition, recommendations that apply to individual sites are given in the descriptions of those sites in Volume 2. It is not possible to summarise all of the detailed recommendations, so the following should be taken as just a broad overview.

A planning amendment is proposed to change the Municipal Strategic Statement and local planning policies and to cover the 113 identified significant sites with overlays as discussed above. Suggested wording for a new local planning policy and three overlay schedules appears in appendices to this report. Such an amendment would be exhibited for public comment prior to final consideration by Council. A planning panel may also be appointed by the Minister for Planning to advise Council about unresolved objections to the amendment, if there are any.

If the amendment is ultimately adopted, its implications need to be well understood and respected by the affected community. There are therefore some proposals for public education in this report, including a brochure and possible seminar.

The greatest threat to nature in Knox is from environmental weeds, and nine of the most serious species have been identified for special attention by Council (see Table 7, p. 32). It is recommended that Council and the Department of Primary Industries conduct a publicity campaign and on-ground works to control these species.

Under the proposed amendment, a permit would be required for removal, destruction or lopping of most native vegetation in the affected sites (subject to various exemptions). This is because removal and destruction of native vegetation is the second-greatest threat to nature in Knox.

Quality Assurance

The utmost care has been taken to ensure that the findings and recommendations of this study can stand up to scientific and legal scrutiny, including in the Victorian Civil and Administrative Tribunal.

The most basic safeguard against faulty or misleading results is that extensive survey work was carried out. This study is probably the most in-depth investigation of nature conservation of a municipality, ever – at least in Australia.

This is reflected in the detailed descriptions given for the identified sites, their significant flora and fauna populations, and detailed justifications for the level of significance assigned on the basis of objective criteria developed by the Department of Sustainability & Environment. (Normally, reports such as this give little written justification of the levels of significance that are assigned). Computer analysis of the field data (tens of thousands of records of plants and animals) has been done to provide statistics of the distribution of rare and uncommon species, so that there is minimal chance that the report claims a species to be significant when it is not warranted by the data. There are many examples of species purported by others to be significant which we have found to be actually widespread and secure.

As an additional quality assurance measure, it is recommended that Council have this report independently peer-reviewed by experts.

Periodic Review

Sites of biological significance can either lose or gain significance over time. The issues affecting nature conservation at the municipal scale can also change. It is suggested that this report be updated in approximately five years.

1. Introduction

1.1 Purpose of the Study

This study was specifically foreshadowed in the 'Knox 2001 – 2010 Sustainable City Strategy'. It has three main purposes:

- (1) To gain a broad overview of native vegetation and wildlife in Knox, including their biological significance, threats and opportunities for improvements;
- (2) To identify, carefully assess and document all sites in Knox that are so important to native flora and fauna that they warrant special recognition and protection; and
- (3) To recommend ways of looking after, enhancing and monitoring Knox's natural vegetation and other habitat.

A major use for this information is to help amend the Knox Planning Scheme to contain an up-to-date, sound, clear and effective basis for protecting the municipality's native biodiversity. (Biodiversity is the variety of species, communities and genetic diversity). The Scheme's Local Planning Policy Framework could be updated to better reflect the matters in (1) above, as described in Section 4 below. The sites identified in (2) point to the need for substantial changes in the Scheme's overlays. Many sites are private land, and the landowners may be directly affected by the findings of this study. In some cases, properties are recommended to be released from restrictive provisions in the Planning Scheme.

There are also various steps that can be taken outside the Planning Scheme to look after natural vegetation. For example, the development and implementation of management plans for Council bushland reserves can yield benefits for biodiversity (Section 4.1.1).

Some vegetation in Knox is significant for reasons other than its biological importance; e.g. trees that are historical landmarks or particularly beautiful. These cases can involve natural vegetation or otherwise, and are dealt with in the companion to this report called '*Knox Significant Vegetation Study*' by Environs Group Pty Ltd (published by Knox City Council, 2004).

1.2 How to Use This Report

The sites of biological significance identified in this study are listed, mapped and described in Volume 2. For readers who simply want to see whether a particular property or area has biological significance, or to read an assessment of a site, it may be adequate to go directly to the key map or site inventory on page 2 of Volume 2, determine the site number, and turn to the corresponding section in the text. There are 114 fully described sites and four briefer summaries of sites (or groups of sites) that are not recommended for special recognition in the Planning Scheme. The key map only shows the 113 sites that are recommended for planning scheme overlays.

To fully appreciate the basis for the assessments that have been made of the sites and the individual species, read Chapters 2 and 3 of this volume, which describe the survey, its methods and main findings.

Sites 1 to 113 are recommended to come under entirely new overlay provisions in the Knox Planning Scheme. Readers who are interested in what this would mean should look at Section 5.5 for how overlays are applied. The details of the proposed provisions can be found in Appendices F, G and H, in conjunction with relevant parts of Clause 42 of the Planning Scheme.

Readers who want to check on the rarity or other significant features of an indigenous animal or plant species, or the severity of an environmental weed, will find an overview in Sections 3.3.1 and 3.5 and tabulated inventories in the appendices of Volume 1. The appendices are also useful for translating between scientific and common names. Other technical terms are explained in the Glossary (p.102).

A detailed discussion of issues related to nature conservation in Knox is given in Chapter 4. There is a list of recommended actions in Chapter 6.

1.3 Background about the Municipality of Knox

The municipality of Knox has a population of approximately 147,000 and its centre lies 27 km east-southeast of central Melbourne, on the fringe of the metropolis. A locality map appears in Figure 1, showing the main suburbs of Bayswater, Boronia, Ferntree Gully, Upper Ferntree Gully, Knoxfield, Lysterfield, Rowville, Scoresby, The Basin, Wantirna and Wantirna South. The easternmost extremity is in Sassafras.

Figure 1. Locality map of Knox. The yellow lines are municipal boundaries, the Belgrave railway line is in violet line and the green patches represent public open space.

Knox's 114 square kilometres have varied land use, comprising significant areas of commerce, industry, reserves of various kinds (including nature reserves) and residential areas of low to medium density. Some of the residential areas incorporate native vegetation. Much of the municipality is rather flat and sparsely treed but parts are steeply hilly with tall forest. It includes large areas of rapid urban growth, and substantial areas of rural land that existed a decade ago have since been converted almost wholly to urban development.

The study reported here found that remnant native vegetation or areas with natural tree cover occupy less than five percent of the municipality. There is even less if one excludes sites with only a handful of hardy native plant species and little chance of natural regeneration.

1.4 Governmental Context of This Study

Table 1 summarises policies, agreements, strategies etc., from global to local, that relate to this study, and which have been taken into account during the preparation of this report and its recommendations.

Jurisdic- tion	Strategy, Policy or similar instrument	Relationship to matters in this study
Global	United Nations Convention on Biological Diversity (1993) – 'The Rio Convention'	 Provides a framework for global action to 'conserve and sustainably use biological diversity for the benefit of present and future generations' (i.e. make biodiversity serve human values); Contains guiding concepts, such as the precautionary principle (see Glossary, p.117) and that each country is responsible for the conservation and sustainable use of its biological resources; Does not include actions to be taken at the local level.
	Japan and China Migratory Bird Agreements (JAMBA & CAMBA)	Some listed migratory bird species occur seasonally in Knox, as indicated in Appendix D and Vol.2 of the present report. JAMBA and CAMBA somewhat raise the levels of protection for these species.
National	Intergovernmental Agreement on the Environment (IGAE) of 1992, signed by first ministers of the federal, state and territory governments	Provides a framework for cooperation between levels of government to achieve environmental outcomes. Under the heading, '2.4 Responsibilities And Interests Of Local Government', it states: '2.4.1 Local Government has a responsibility for the development and implementation of locally relevant and applicable environmental policies within its jurisdiction in cooperation with other levels of Government and the local community'. The IGAE also establishes general principles such as the Precautionary Principle (see Glossary, p.117) and
	National Strategy for Ecologically Sustainable Development (1992), signed by first ministers of the federal, state and territory governments.	consistency of data gathering throughout Australia. Provided the impetus and broad context for the National Strategy for Biodiversity (see below); It also reiterates the Precautionary Principle of the IGAE.

Table 1. Summary of governmental policies, strategies etc. related to this study.

Page	4
------	---

Jurisdic- tion	Strategy, Policy or similar instrument	Relationship to matters in this study			
	National Strategy for the Conservation of Australia's Biodiversity (1996)	The present study represents local implementation of many of the national-scale objectives of this Strategy. For example, the Strategy states, 'There is a need for more knowledge and better understanding of Australia's biological diversity', and it has the objective (in section 1.5.2) to 'Promote the conservation of biological diversity in urban areas by:			
		 '(a) encouraging retention of habitat; '(b) improving strategic planning and infrastructure co- ordination so as to enhance [biodiversity]; 			
		<i>(d) encouraging action by local governments to retain and improve natural ecosystems'</i>			
		The Strategy also provided some impetus for <i>Victoria's Biodiversity Strategy</i> and the Victorian Native Vegetation Framework (see below).			
	National Framework for the Management and Monitoring of Australia's Native Vegetation (published 2000)	A joint initiative of federal, state and territory governments to coordinate their respective approaches toward a goal of reversing the decline of native vegetation in extent and quality. The Victorian Native Vegetation Framework (see below) was prepared in conformity with this document, and it is a major instrument for conserving Knox's native vegetation in accordance with the recommendations of the present report.			
	Environment Protection and Biodiversity Conservation Act 1999	Provides legal protection against development proposals for certain threatened species and migratory species that are found in Knox, as documented in the present report. Also identifies land clearance as a key threatening process. The Precautionary Principle is employed within the Act. There are no requirements on local government, but the Act can help Council to prevent certain environmentally harmful developments.			
	National Objectives And Targets For Biodiversity Conservation 2001–2005	Includes the following targets for state and federal jurisdictions, and which rely on recommendations of the present report for effective local implementation:			
		• 'By 2001, all jurisdictions have mechanisms in place, including regulations, at the State and regional levels that prevent decline in the conservation status of native vegetation communities as a result of land clearance';			
		• 'By 2001, all jurisdictions have clearing controls in place that will have the effect of reducing the national net rate of land clearance to zero';			
		• 'By 2003, all jurisdictions:			
		? 'have clearing controls in place that prevent clearance of ecological communities with an extent below 30% of that present pre-1750; and			
		? 'have programs in place to assess vegetation condition'.			
State	Flora and Fauna Guarantee Act 1988	The FFG Act has negligible direct influence on conservation of flora or fauna in Knox. However, it provided a basis for <i>Victoria's Biodiversity Strategy</i> – see below.			
	Victoria's Biodiversity Strategy (1997)	This strategy provided the context and basis for the Native Vegetation Framework, which is more specifically and directly relevant to the Knox study			

Jurisdic- tion	Strategy, Policy or similar instrument	Relationship to matters in this study		
	The Victorian Native Vegetation Framework (NRE 2002a and supporting documents)	The report you are reading uses methods to describe and assess natural habitat that are prescribed in the Framework, and provides information that should assist greatly in implementation of the Framework.		
	Catchment and Land Protection Act 1994	This Act led to the preparation of Regional Catchment Strategies, the Catchment Management Authorities and the regional strategies and plans listed below.		
	Victoria Planning Provisions (VPPs), which form a substantial part of the Knox Planning Scheme	The town planning measures recommended in this report must conform to the VPPs. See Chapter 5 below.		
Regional	Port Phillip and Western Port Regional Catchment Strategy of 1997 (overdue for replacement)	This strategy has as one of its five goals, 'To protect the diversity and extent of natural ecosystems and species'. The present study and its recommendations are intended to achieve just that.		
	Port Phillip and Westernport Native Vegetation Plan of 2004	Not yet published. It is already an incorporated document the VPPs and the Knox Planning Scheme's Local Plann Policy Framework may need to be amended to reflect wis is in the Plan.		
	Dandenong Catchment Action Plan of 1999	In agreement with the present study, the Catchment Plan identifies that the key pressure for the catchment is loss and degradation of native vegetation and habitat, and that ' <i>The</i> <i>key outcomes for the catchment will be:</i> • ' <i>enhanced condition of native vegetation communities</i>		
		 'extended native vegetation coverage 'protection of key areas of wildlife habitat 'protection of soil and water quality'. 		
Municipal	'Knox Vision 2020'	The present study assists the vision that: 'In 2020, Knox is renowned for its natural environment and biological diversity. These are the essence of the character of Knox. The community is aware of global biodiversity issues and the consequences of vegetation clearing. They are acting locally to revegetate, protect and enhance the environment'.		
	Knox 2001 – 2010 Sustainable City Strategy	The present study was specifically foreshadowed in the Sustainable City Strategy.		
	Knox Community and Council Plan 2003-2006	Includes a commitment to 'Amend the Knox Planning Scheme to incorporatesites of biological significance and significant vegetation', as per the recommendations of the present study.		
	Knox Planning Scheme	See Chapter 5 below.		

1.5 The Study Approach

This study has four main parts:

- Scientific investigation;
- Identification of issues affecting nature;
- Development of town planning mechanisms to support protection and proper management of biodiversity and habitat; and
- Determination of other practical ways to improve the prospects for maintaining biodiversity and habitat.

The first and largest part comprised a scientific survey of the current state of nature in the municipality (flora, fauna, ecological communities, and the threats that they face), based on fieldwork and a survey of literature and historical information. As discussed in Chapter 2, this included a very detailed field study of the vegetation (particularly native vegetation), whereas fauna were investigated only through literature, observations of other people, and observations made incidentally during the vegetation survey.

Flora and fauna data were transferred to a computer and analysed to determine the abundance and distribution of species and ecological communities in Knox. The results of the survey work are summarised in Chapter 3. Broader-scale data from the Department of Sustainability & Environment provided similar information in a bioregional and statewide context.

The second part of the study aims to identify what is positively or adversely affecting the natural flora and fauna in Knox. This relies heavily on the results of the field survey, which specifically looked for positive and negative influences on the natural environment.

The third and fourth areas of investigation listed above aim to devise options for improving the positive influences on the natural environment and reducing the adverse effects. The likely costs and benefits of the options have been weighed up against those of inaction to come up with recommendations.

2. Scientific Methods

2.1 Extent of Coverage

No biological study ever aims to survey every organism from the largest tree down to the smallest bacterium. A decision has to be made about what can be surveyed within the available budget and time to provide the best indication of overall biodiversity and ecological wellbeing. This study adopted the usual approach of starting with a detailed survey of the vegetation (excluding mosses, algae, fungi and other lower life-forms) and the habitat that the vegetation provides for native fauna. Fauna were not specifically surveyed, but birds, mammals, frogs, reptiles and butterflies were recorded whenever they were detected during the fieldwork. The two people who conducted the vegetation survey, Dr Graeme Lorimer and Mr Rik Brown, tried to be as observant of wildlife as possible while carrying out their other duties, and observational records were sought from other sources.

The main reasons for the emphasis on surveying vegetation rather than fauna in this study were that:

- The type and condition of vegetation largely determines the richness and wellbeing of fauna; and
- Only a fraction of the total fauna can be observed in any short-term study like this.

The fieldwork excluded much of Knox's parts of the Dandenong Ranges National Park, Lysterfield Lake Park and the Dandenong Valley Parklands, because biological conservation of these areas is the responsibility of Parks Victoria. Nevertheless, pre-existing biological information from these areas was obtained and consideration was given to interactions between these areas and the rest of Knox, such as the parks' importance in conserving certain species and the influences that neighbouring land can have on the parks.

For the rest of Knox, our aim was to investigate every accessible area of natural or semi-natural habitat larger than the size of a typical house allotment. However, some areas of habitat could not be visited.

The largest and probably the most significant areas of unsurveyed habitat are some of the properties within a contiguous expanse of forest cover in The Basin, east of Wicks and Sheffield Roads and abutting the Dandenong Ranges National Park. Many landowners there did not provide permission to inspect their land, and in any case there are far too many hectares to inspect all of them in fine detail. Instead, a representative sample of the properties was inspected in fine detail and the data were extrapolated to other properties by viewing them from the boundaries and making use of aerial photographs, topographic maps and geological maps.

The other area of substantial size that could not be inspected was the part of the Lysterfield Hills owned by Boral and Pioneer, where quarries operate. Permission was not obtained to visit this land, but some third-party information was available.

For sites that could be visited, fieldwork was conducted mostly from November 2001 to November 2003. This was a period of drought, or even extreme drought for the most intensive period, which means that some species of plants and animals were detected less frequently than they would be in a normal year, and perhaps missed altogether.

2.2 Survey of Literature and Pre-existing Information

Dr Lorimer has years of flora and fauna records from some sites. In addition, historical records from other sources were sought to minimise the risk of overlooking any species, and to determine what species may have become locally extinct.

The main source of historical records of plants was the computer catalogue of specimens at the National Herbarium of Victoria. These records are generally reliable because nearly all specimens have been identified by expert botanists who recheck their determinations when taxonomy (essentially, the naming of species)

changes. However, collectors of specimens sometimes mislabel the collection locations, and occasionally specimens have obsolete or erroneous identifications.

Some of the herbarium records are well over a century old. The other main source of old records of plants was the *Victorian Naturalist* journal. Paget (1985) researched all issues of the journal from its inception in the 1880s, seeking plant information about Knox and its surroundings. He found and quoted forty-seven articles about the Field Naturalists Club of Victoria's excursions to the district, between 1890 and 1976. After adjusting obsolete plant names, it appears that numerous plant species were observed in Knox that have not been recorded since the 1940s or earlier. The present author has been careful to discount any dubious records, of which there were rather few.

The standard text, '*Flora of Melbourne*' (SGAP, 1993), contains suburb-by-suburb records of indigenous plant species, both historical and recent. Among the historical records for suburbs within Knox are several mentions of orchid species that are not substantiated by any other source material investigated in the present study. These are all treated here as plausible (given that there are extant or verified records of the species close to Knox) but they cannot be given full weight.

The recent records of plant species in '*Flora of Melbourne*' were used as a guide to the regional rarity of species found in Knox. We saw in the field almost all plant species recorded for Knox in '*Flora of Melbourne*', except about ten which are presumed extinct (Section 3.4).

Beauglehole (1983) provided a very authoritative list of plant species in many parts of the Melbourne region. His field records include a 1982 list for Lysterfield Lake Park, which was checked for species that may be present in Knox and not recorded by others. Another list for the park by Cook (1994) was used the same way.

The Flora Information System of the Department of Sustainability and Environment (DSE) contains records of plants in Knox from many sources, including some erroneous records. The records served as indicators of locations where unusual species should be sought, but we have not accepted records that we have been unable to verify. The same approach was taken to other plant lists in 'grey literature' such as management plans. Only species that the present author deems plausible are included in the inventory of Appendix A, with annotation to indicate that they are unconfirmed.

This applies in the particular case of records of flora and fauna in the Dandenong Valley Parklands, which is important because the parklands were inspected only rather superficially in this study. Data were obtained from unpublished lists of Lorimer, Paget, Adams & Simmons and others. Apart from the records of Lorimer, these lists were found to contain some questionable records. Because of this, and given the undoubtedly very significant habitat that the parklands contain, it is quite likely that there are plant species present there which are not yet recorded in Knox (or at least, not reliably).

The Department of Sustainability & Environment maintains a computer inventory of fauna records called the Atlas of Victorian Wildlife. This was a major source of fauna records.

Some of the department's BioMaps also show locations where rare or threatened species of flora or fauna have been recorded, and these were used as prompts for checking in the field. Some of these records were found to be unreliable due to false locations or false identifications.

Several residents and groups provided species lists of fauna in Knox, or in one case extending slightly beyond Knox into Upwey (see Acknowledgments, p.iii). The expertise and care of these contributors in preparing their lists was excellent and the records have been accepted as reliable after careful scrutiny by the author.

A few additional records were found in the 'Knox Wildlife Atlas', a database maintained by Knox City Council. Any records that appeared questionable or that probably arose from escaped animals were not accepted.

A literature survey was conducted to investigate previous studies' classifications of vegetation communities and habitat types. A specification for this project was to relate the vegetation to the classification scheme of 'Ecological Vegetation Classes', or EVCs, that is routinely employed by the Department of Sustainability and Environment. Unfortunately, the only published work that has tried to use this system of classification in Knox is the 'BioMap' project of Oates and Taranto (2001), whose authors warn that their mapping was only a 'first draft' that had not been subjected to the intended degree of ground-truthing. It was found to be unreliable. More

reliable information was obtained from an unpublished vegetation mapping study by Frood (in preparation) for the Dandenong Ranges National Park, but the area covered is just outside Knox's eastern boundary.

The Department of Sustainability & Environment has estimated the current and pre-European extent of each EVC within each bioregion, in hectares. The figures are likely to be fairly robust to inaccuracies in the mapping of EVCs, due to the summation of areas within whole bioregions. From these figures, the department has applied a formula given in the National Native Vegetation Framework and the Victorian Native Vegetation Framework (NRE 2002a) to determine the 'conservation status' of each EVC in each bioregion, using categories of 'Presumed Extinct', 'Endangered', 'Vulnerable', 'Depleted', 'Rare' and 'Least Concern'. These categories were obtained from an internal departmental document that is soon to be published in the Port Phillip and Westernport Native Vegetation Plan. They are used in determination of each site's biological significance level (Section 2.6).

The Department of Sustainability & Environment maintains a 'BioSites' database of sites of biological significance (NRE 2002b). This database was searched for records within Knox. The only ones present were for Koolunga Native Reserve in Ferntree Gully and Liverpool Road Retarding Basin in Boronia. Both records are incomplete and provided no assistance to the present study. This is because the database is in its infancy and negligible effort had been exerted on sites in Knox. The present study can provide a great deal of data to go into the BioSites database.

2.3 Finding Potential Sites of Significance

Potential sites of biological significance were sought throughout the municipality on both public and private land. Sites that were already identified in the Knox Planning Scheme as a result of the study by Water Ecoscience (1998) served as a starting point, and all of these were inspected.

Digital aerial photographs with a resolution of 60 cm were scrutinised to locate any other treed areas larger than a typical house allotment. The list of such sites was combined with the personal knowledge of the authors, Council staff and others to obtain an initial list of over 150 sites that were either known to be significant or warranted inspection.

Several additional sites were detected in the course of the inspections, which involved travelling along probably every road in Knox where natural or semi-natural vegetation could be found.

2.4 Site Inspections

Fieldwork was done mostly between November 2001 and November 2003 by Dr Graeme Lorimer and Mr Rik Brown. The tasks undertaken were to:

- Map site boundaries, matching property boundaries as far as possible;
- Map the parts of each site covered with different EVCs and, where appropriate, different floristic communities within EVCs;
- Describe the vegetation structure and composition within each vegetation type in detail so that the correct EVC name could be reliably determined and justified (Section 2.4.1);
- Record a thorough inventory of species of indigenous plants and environmental weeds within each vegetation type, and often within each separate area of each vegetation type (Section 2.4.2);
- Record the severity of environmental weeds using a four-level scale (Section 2.4.3);
- Record the population status of each species that is rare or threatened in Knox (typically population size, security and threats);
- Assess and describe the ecological condition of the vegetation within each vegetation type, sometimes with a map to show areas of different ecological condition;
- Record all birds, frogs, butterflies (not skippers) and native mammals observed during the survey;

- Record wildlife signs and habitat features;
- Record other attributes relevant for a Statement of Significance under the Planning Scheme;
- Indicate other threats to the significant attributes of the site (e.g. dieback, garden waste dumping, overfrequent slashing);
- Provide management recommendations for conserving the significant attributes;
- Provide monitoring recommendations.

All records of flora and fauna at each site will be lodged with the Department of Sustainability and Environment's Arthur Rylah Institute, which is the central repository for such data in Victoria. The information recorded was also designed to facilitate simple entry into the Department of Sustainability & Environment's BioSites database of biologically significant sites, which has negligible data for Knox at present.

2.4.1 Delineation of Vegetation Types

One of the first tasks in assessing each site was to determine boundaries between different types of vegetation and to characterise each type in detail. A list was compiled of all species of indigenous plants and environmental weeds within each type of vegetation, and other information was recorded as indicated on the following excerpt from the field data sheet that was used:

Geology, soil & topographic determinants: Uppermost trees (species, height, density): Lower trees / large shrubs (species, height, density): Vines / climbers: Shrubs:	
Ferns:	
Ground flora – dominant species:	
Ground flora – other abundant species:	
Ground flora – total % coverage by all species: Richness:	
Non-dominant character spp and indicator spp:	
Understorey partitioning between heathy shrubs, other shrubs, grassy spp., tough sedges &c:	
How mesic or xeric; What limiting factor?:	
Visibility (typical distance within which one can readily see a person walking):	
Percentage in ecological conditions A to D:	
Likely deviations from natural state:	

These data should be adequate to determine and justify the appropriate designation of EVC applied to each area, particularly by reference to Appendix A, published descriptions of the EVCs (e.g. Oates and Taranto 2001, Commonwealth and Victorian Regional Forest Agreement Steering Committee 1997) and the Department of Sustainability and Environment's 'benchmark' descriptions of EVCs within each bioregion.

2.4.2 Detection and Recording of Plant Species

Botanists of the Department of Sustainability & Environment generally record plant species in an area by surveying vegetation intensively within sample plots ('quadrats') of about 30 m \times 30 m, and more superficially over the majority of the land (e.g. Gullan *et al.*, 1979). This is a sensible method for the vast areas that they often study, but to do so in the much smaller and patchier sites of this study would result in overlooking a significant proportion of the plants present.

We therefore made a concerted attempt to record all detectable indigenous plant species on each site, with the exception of some private land that could only be inspected from the boundary. For almost every site, a separate list of plant species (indigenous and environmental weeds) was compiled for each habitat type within the site.

Introduced species were recorded with differing degrees of thoroughness depending on the state of the vegetation. Only serious weeds were noted where few indigenous plants remained, whereas full lists of weeds were compiled for the most intact vegetation.

2.4.3 Weed Severity

The severity of each species of environmental weed recorded at each site was rated according to a four-level scale:

- **'Very Serious'**: Currently becoming denser and/or more widespread, to the extent that the vegetation's current value for indigenous flora or fauna is expected to suffer a very serious reduction within the next few years if new measures are not introduced to control this species. This excludes weeds that have already done such damage but are no longer actively and very seriously replacing the remaining indigenous flora and fauna;
- **'Serious'**: Seriously diminishing the vegetation's future value for indigenous flora or fauna by either causing active deterioration or preventing ecological recovery, or else likely to become very serious (as defined above) within 5-10 years if preventative action is not taken;
- **'Moderate'**: Causing significant (but not serious) diminution of the vegetation's value for indigenous flora or fauna by either causing active deterioration or preventing ecological recovery, or else having a strong chance of becoming serious (as defined above);
- **'Insignificant'**: Not representing any significant ecological threat, e.g. weeds that are expected not to spread beyond the edges of paths and tracks.

This is very similar to the scale of Carr *et al.* (1992), except that it is more explicit about whether the harm being caused is present or potential, and it makes provision for plants that are currently causing moderate (not serious) harm with no indication of becoming serious in future. The 'Moderate' category above corresponds to Carr *et al*'s 'P' (potentially serious) category and the 'Insignificant' category above corresponds to Carr *et al*'s 'N' (not a threat) category.

Note that the past effects of environmental weeds are not taken into account in this exercise. For example, consider an area that has been reduced to just vestiges of indigenous flora due to decades of competition by pines and has reached a rather stable state. Although the accumulated effect of the pines may have been very serious, this was in the past and a 'Very Serious' rating would be inappropriate under the approach adopted here. However, if the observer believes that the indigenous habitat could recover if the pines were removed, then a 'Serious' designation could be applied because the pines are a serious impediment to the future value of the site for flora or fauna.

This system of rating environmental weeds across the municipality provides a scientific basis for assessing which species are presently causing greatest ecological harm or threat. This is more useful for developing policy and strategies than a classification scheme that takes into account how much harm has been caused by each species in the past (e.g. those based on percentage cover of weed species).

2.4.4 Vegetation Quality and Condition

Habitat Scores

During the conduct of this project, the Department of Sustainability & Environment produced a quantitative method for measuring what they call 'vegetation quality', which takes into account the vegetation's ecological condition, the presence of logs and hollow-bearing trees, the extent of contiguous native vegetation and connectivity to other areas of native vegetation. The measure is called the 'habitat score', and it plays a critical role in the Victorian Native Vegetation Framework (NRE 2002a). A manual for the use of this method is yet to be published, but it is largely explained by Parkes *et al.* (2003).

A habitat score can only be validly determined for an area, called a 'habitat zone', that supports a single Ecological Vegetation Class and that is fairly uniform in its ecological characteristics, taking into account tree density, diversity of plant sizes and forms, weediness, degree of natural regeneration of flora, organic litter cover and presence of logs. Sites of biological significance in Knox typically have more than ten such zones, and a separate habitat score could be determined for each.

Any assessment of vegetation quality for legal purposes, such as for deciding applications for permits under the Knox Planning Scheme, should be based on the 'habitat score' method. Ideally, habitat scores would have been determined for each part of each site investigated in the present study, but:

- The method was not available until much of the work had been done, and technical details are still not published; and
- It would have roughly doubled the time taken to inspect the sites.

The latter problem could be ameliorated by restricting the effort in each site to only one or two zones that are expected to have the highest habitat scores. This would be adequate for determining the maximum 'conservation significance' of vegetation on the site according to the Native Vegetation Framework, and this is a very important factor to consider when assessing the overall significance of the site (Section 2.6). This would be a worthwhile approach for any future study of this kind, if the additional funds and time are available.

In the case of sites where the habitat score plays an important role in determining which of the recognised levels of significance (Local, Regional, State and National) should be assigned, an estimate was made based on the existing data and the author's experience with habitat scoring. In most cases, this was adequate to provide confidence in the assigned significance level. The few remaining cases are acknowledged in the relevant sections of Volume 2.

Ecological Condition

Because the habitat scoring method was not available for most of the fieldwork, and because it is too onerous for application throughout every site investigated in this project, a simpler and more qualitative method was used, following Lorimer *et al.* (1997). This maintained consistency with several earlier investigations of vegetation in Knox (e.g. Reid *et al.* 1997b; Lorimer 1998, 1999a, 1999b, 2000). This method measures the ecological condition of vegetation, but does not directly take into account other aspects of the Department of Sustainability & Environment's 'habitat score', namely logs, large old trees, the extent of contiguous native vegetation and connectivity to other areas of native vegetation.

This method relies on the observation that human modification of a natural environment generally causes a reduction in biodiversity (i.e. species and genetic variability) and a shift from native to introduced species. Plants are very good indicators of this process; indigenous plants tend to be replaced by weeds, and the total number of plant species declines.

This process goes through several stages. First, a few indigenous plant species that are sensitive to disturbance disappear, while most other species survive and reproduce. With greater disturbance, the number of lost indigenous species increases and some of the remaining ones struggle to reproduce, typically because their seedlings are out-competed by weeds. A stage may then arise where half or more of the indigenous species die out, leaving only hardy species that can survive against weed invasion and loss of the native fauna that provide pollination and pest control. If earthworks or similar activities are conducted, only the hardiest plants are likely

to survive (such as isolated remnant trees in gardens), and these generally gradually decline because they cannot reproduce effectively (e.g. tree seedlings being mowed).

This led the author to devise a scale from A to D based on the position of vegetation in the stages of degradation just described. The ratings are designed to be easily determined in the field, using criteria based on two factors:

- the number of indigenous plant species remaining compared with expectations of a pristine site of the same size and habitat type; and
- the ability of the indigenous species present to survive and reproduce.

The categories are:

- **Rating A**: Contains almost all of the indigenous plant species that one could expect to occur in that type of vegetation (taking into account the size of the area); at least 80% of plant species able to reproduce adequately to maintain their numbers. To aid readability, this is generally represented in Volume 2 as 'ecological condition A (excellent)'.
- **Rating B**: Contains at least half of the indigenous plant species that could be expected, but not reaching rating A due to loss of species or reproductive failure. Better management and some revegetation can usually raise the rating to A. This is generally represented in Volume 2 as 'ecological condition B (good)'.
- **Rating C**: Contains less than half of the indigenous plant species that could be expected, but more than about 20%; most of the indigenous plants are likely to be able to reproduce successfully. This is generally represented in Volume 2 as 'ecological condition C (fair)'.
- **Rating D**: Contains less than half of the indigenous plant species that could be expected, frequently less than 20%; reproduction of most of the indigenous plants usually seriously impeded. These areas usually have value only for landscape and hardier wildlife. This is generally represented in Volume 2 as 'ecological condition D (poor)'.

In marginal cases, attention is focused on the plant species that are expected to play the most important ecological role, such as the naturally dominant species in the overstorey and understorey. If the loss of biodiversity is particularly evident among the most ecologically important species, the lower ranking is assigned.

While this method for assessing ecological condition is based solely on plants, it can be expected to provide a reasonable indication of fauna habitat (and consequently fauna species), and overall genetic biodiversity.

We also believe that the ecological condition scale above is a good workable indicator of the value of a site for conservation of biodiversity. Note that it differs from most indicators of vegetation 'quality' published elsewhere, in that it does not downgrade a site solely for the presence of weeds. For example, many wetlands in Knox have a relatively high density of weeds in a stable coexistence with high numbers of indigenous species (e.g. in the Dandenong Valley Parklands). The ecological condition rating may be 'B' in such a case, despite the weediness, because the indigenous plants are secure. A typical 'vegetation quality' indicator would rate such a site as being of poor quality because of the significant proportion of weeds.

The ecological condition scale above places value on conservation of biodiversity, not on naturalness. A site such as the one quoted above may disappoint people who value naturalness very highly, but that is a secondary consideration for the objectives of this report.

For each of the sites described in detail in Volume 2, there is an estimate of what area of vegetation within each vegetation type falls into each rating of ecological condition; e.g. "Grassy Forest -0.7 ha in ecological condition 'A' (good), 1.2 ha in ecological condition 'C' (fair) and 2.0 ha in ecological condition 'D' (poor)".

2.5 Incidental Records

Throughout the study, Dr Lorimer and Mr Brown noted any occurrences of flora and fauna that were not recorded in the formal surveys described above, such as birds observed while driving around Knox, or unusual plants seen outside the identified sites of significance.

2.6 Significance Ratings

The biological significance of each site has been classified as 'Local', 'Regional', 'State' or 'National' according to the objective criteria employed by the Department of Sustainability & Environment. The only published version of these criteria appears in the report describing the department's BioSites database (NRE 2002b), but the version employed in this study, titled '*Consolidated Criteria to Determine Sites of Biological Significance in Victoria*' (version 2.0, 19th December 2003), has important alterations in regard to the significance of sites with threatened vegetation types (which is typically the case in Knox). It is expected to be published during 2004, and the Department regards it as not yet ready for public release.

The significance rating of a site should not be confused with the 'conservation significance' of a particular part of a site, as defined in the Native Vegetation Framework (NRE 2002a, Appendix 3). The latter uses a scale of 'Low', 'Medium', 'High' and 'Very High', and usually varies substantially from one part of a site to another depending on ecological condition, the rarity of the vegetation type and similar factors. Thus, the area affected by a hypothetical land development may have a conservation significance (according to the Framework) that is 'Low' or even absent, even though the site as a whole may have State significance. One should therefore be careful not to draw too many conclusions from a site's significance level about the appropriateness of land developments there.

The criteria that are used for assessing the significance level of a site fall under the following headings:

- 1. *Ecological integrity and viability*: the importance of a site as an exceptionally intact example of its type, or in critical habitat requirements (e.g. breeding sites) at the regional scale or wider;
- 2. Richness and diversity: for sites with exceptionally large numbers of species, families, vegetation types etc.;
- 3. *Rarity*: the importance in conserving species or communities that are listed as rare or threatened;
- 4. *Representative of a type*: the importance of a particular site or population in demonstrating the principal characteristics or variability of the habitat type or species involved e.g. showing the features of a habitat type at the limits of its tolerance, or occurring in particularly unusual circumstances); and
- 5. *Scientific and educational value*: the importance of a site or species in contributing to wider understanding of natural history, by virtue of its use for research, an educational resource, a reference site, a fossil site, etc.

The significance level assigned to a site is the highest level that is determined under any of the individual criteria.

The criterion that most commonly determines the significance of sites in Knox is the presence of a remnant of an Endangered EVC, which confers State significance on a site. (The criteria state that native vegetation qualifies as a remnant of an EVC for these purposes if it qualifies as a 'remnant patch' under the 'Operational Guidelines' for the Native Vegetation Framework, which are not yet finalised.) Note that the obsolete, published criteria (NRE2002b) classified such sites as either State or Nationally significant, depending on their vegetation quality, but this has since changed.

3. Scientific Findings

Figure 2. Bioregions and biogeographical zones of Knox. The area generally west of the red curves is the Gippsland Plain bioregion, and the remainder is the Highlands Southern Fall bioregion.

3.1 Bioregions

Knox has been recognised for many years as spanning two biogeographical regions, or 'bioregions', that have more recently come to be called the 'Gippsland Plain' and the 'Highlands Southern Fall' (Willis 1962; Conn 1993; Thackway & Cresswell 1995). In general, the former is characterised by low-lying, near-coastal environments with predominantly woodland vegetation, whereas the latter tends to be characterised by more hilly areas of higher rainfall, dominated by tall forests except on terrain that is particularly exposed to the

elements. In Knox, the transition is determined by geology, with lightly undulating terrain of sedimentary origin in the Gippsland Plain bioregion and hilly terrain of volcanic origin in the Highlands Southern Fall.

The whole of Knox has a cool-temperate, Mediterranean climate. Annual average precipitation in the part that lies within the Gippsland Plain bioregion grades from approximately 800 mm in the west to approximately 1,000 mm in the east. This is very similar to the Highlands Southern Fall part of Knox, whose rainfall ranges from approximately 800 mm at the western end of the Lysterfield Hills to 1,100 mm at Knox's eastern extremity in Sassafras.

The extensive fieldwork of the present study has allowed refinement of the boundary between these bioregions, and further subdivision into finer-scale biogeographical zones according to patterns of geology, soil moisture, soil fertility, topography and the resulting types of vegetation and fauna. The results appear in Figure 2.

The precision with which one can draw a boundary between bioregions varies along the boundary. At its best, in parts of Boronia and Rowville, the transition between bioregions occurs over a band less than 200 m wide. In the vicinity of the intersection of Lysterfield Rd and Wellington Rd, the red bioregional boundary on Figure 2 has been drawn close to that currently recognised by the Department of Sustainability & Environment, but there would be some justification for moving it northward by up to 1.4 km to coincide with the junction between sedimentary and volcanic geology. The department also presently regards the low ridge to the northwest of the intersection of Napoleon Rd and Lysterfield Rd (the Blackwood Park estate) as part of the Highlands Southern Fall, but that seems inconsistent with their treatment of every other ridge and knoll along that geological formation. Figure 2 therefore shows the boundary in that vicinity following a pronounced steepening of terrain that is associated with the edge of the Dandenong Ranges volcanic formation.

The bioregional boundary plays a very important role in determining the legal protection of native vegetation in Knox. Under the Victorian government's 'Native Vegetation Framework' for protection and management of native vegetation (NRE 2002a), there is a strong tendency for native vegetation on the Gippsland Plain to be treated as more valuable than vegetation of the same type and condition in the Highlands Southern Fall. This is because the former bioregion retains far less native vegetation than the latter. Consequently, native vegetation located on the transition between the bioregions might be treated quite differently by government and under the Planning Scheme, depending on whether it is deemed to be on one side or the other of the bioregional boundary. The issues that arise are more of a legal and administrative nature than ecological, and are therefore not considered further here.

3.2 Biogeographical Zones

At a finer scale than the bioregions, Knox can be divided into the six biogeographical zones shown in different colours on Figure 2, according to patterns of geology, soil moisture, soil fertility, topography and the resulting types of vegetation and fauna.

Within each zone, the pre-European flora and fauna at any particular location were primarily determined by topographic factors, such as steepness and the direction that the slope faces. The flora and fauna on a site vary naturally with time due to the cycles of fires, floods, storms and droughts.

The characteristics of each zone are discussed in the following subsections.

3.2.1 Dandenong Ranges

The eastern edge of Knox extends into the lower slopes of the Dandenong Ranges, formed from Devonian volcanic rock eroded to a clay loam. The combination of hilly terrain, volcanic soil origins and the highest rainfall in Knox (approximately 1,000 mm annual average) provides conditions for flora and fauna associated more with the Dandenong Ranges than the rest of Knox, e.g. abundant Mountain Grey-gums and Australian King-parrots.

At the edge of this zone, most of the way between The Basin and Upper Ferntree Gully, there are deposits of soil called colluvium that have slumped downhill over geological time. These areas can have some characteristics intermediate between the Dandenong Ranges and the area of sedimentary geology to the west.

Distinctive vegetation occurs where the colluvium is shallow, such as at Wicks Reserve in The Basin and Koolunga Native Reserve in Ferntree Gully, due to the effects of water seepage and the different sorts of conditions experienced by shallow roots compared with deep tree roots.

Within this zone, the Ecological Vegetation Classes recognised by the Department of Sustainability & Environment show a pattern of:

- Damp Forest in the wettest gullies;
- Herb-rich Foothill Forest in other gullies;
- Grassy Forest on lower, less exposed slopes;
- Grassy Dry Forest on exposed mid-slopes; and
- Shrubby Foothill Forest on the upper slopes (typically >400 m above sea level).

There are also smaller patches of Valley Grassy Forest, Lowland Forest and Shrubby Gully Forest.

3.2.2 Undulating Country

The part of the Gippsland Plain bioregion that occurs in Knox can be divided into valley floors and gently undulating terrain with shallow slopes and moderate drainage. The latter is the 'undulating country' shown in yellow on Figure 2. It has thin duplex soils with light grey loam topsoil over clay subsoil. These are derived from Upper Silurian and Devonian sediments, or from metamorphic rock (principally hornfels) at the interface between these sediments and the volcanic formations of the Dandenong Ranges.

The southeastern corner of this zone, near the intersection of Wellington Rd and Lysterfield Rd, differs in its volcanic soil (a gritty, light grey loam over clay). In this respect, this corner of the zone could be classified as part of the 'Lysterfield Granodiorite' zone of Section 3.2.5, i.e. part of the Highland Southern Fall bioregion. However, the Department of Sustainability & Environment presently regards it as being part of the Gippsland Plain bioregion, presumably because of its topography.

The annual average rainfall in this zone grades from about 800 mm in the west to about 1,000 mm in the east.

Nearly all of the original vegetation of the zone belonged to the nationally endangered Ecological Vegetation Class, Valley Heathy Forest. Exceptions occur in the southeastern corner where Herb-rich Foothill Forest occurs due to the volcanic soil, and at Old Joes Creek in Boronia where Lowland Forest and Damp Forest occur in small patches due to unusual local geography.

3.2.3 Valley Floors

The valley floors within the Gippsland Plain part of Knox are covered with moderately fertile, alluvial soil washed down from the hills. The broadest ones visible on Figure 2 are floodplains with early European descriptions like 'impassable swamp' or 'very swampy and scrubby' (Paget, 1985). For most of the year, soil moisture is abundant and reliable due to drainage and seepage from higher ground. However, the soil often dries out greatly during February to April except within a small distance of the perennial streams. The variation of rainfall across the municipality causes no noticeable gradient in the flora or fauna of this zone because the main factors determining soil moisture are drainage and seepage rather than local rainfall intensity.

Prior to European settlement, the Ecological Vegetation Classes in this zone were:

- A narrow band of Swampy Riparian Woodland dominated by Swamp Gums (*Eucalyptus ovata*), or occasionally Riparian Forest dominated by Manna Gums (*Eucalyptus viminalis*), along perennial streams, where soil moisture was maintained during the driest months by water seeping out of the stream;
- Swampy Woodland over large areas, dominated by Swamp Gums, Mealy (or Silver-leafed) Stringybarks (*Eucalyptus cephalocarpa*) and Swamp Paperbarks (*Melaleuca ericifolia*);
- Floodplain Riparian Woodland, which is confined to the broadest areas of Dandenong Creek's floodplain, south from about High Street Rd (and possibly also along Corhanwarrabul Creek and Monbulk Creek prior to settlement); and

• Wetlands of various sizes, depths and compositions.

These areas have been favoured for agriculture, drainage works and sewers, and they are also susceptible to massive invasion of vine weeds like blackberry (*Rubus discolor*), Japanese Honeysuckle (*Lonicera japonica*), Wandering Jew (*Tradescantia albiflora*) and Greater Bindweed (*Calystegia silvatica*). Consequently, this biogeographical zone has been very badly degraded almost throughout, despite the comparatively large area that is reserved.

3.2.4 Granodiorite Gullies

Granodiorite is the type of Upper Devonian volcanic rock found in the southeastern corner of Knox. It provides less nutrients and more skeletal soil for plant growth than elsewhere in the municipality. Some of it has eroded and washed into gullies that now flow into Lysterfield Lake.

All of these gullies within Knox are in Lysterfield Park, and were not inspected for this project because the park is outside the scope of detailed investigation for this project (being under the control of Parks Victoria).

The Department of Sustainability & Environment's BioMaps give conflicting accounts of the nature of these gullies. The BioMap of extant Ecological Vegetation Classes (EVCs) shows Shrubby Gully Forest, but the BioMap of pre-European EVCs shows the same EVCs as gullies in the 'Valley Floors' zone of Section 3.2.3 above. Vegetation mapping by Cook (1994) tends to support the latter (for example, he recorded not one *Melaleuca squarrosa*, which is usually a dominant species in Shrubby Gully Forest), but his descriptions of vegetation types are not consistent with current concepts of EVCs.

On balance, it seems more likely that this zone is not sufficiently different from the previous one to warrant separate recognition, but site inspection would resolve this.

3.2.5 Lysterfield Granodiorite

This zone extends east of the Lysterfield Hills Ridge as far as Gembrook and south almost as far as the Princes Hwy. Its characteristics are determined principally by the geology (hence the title), with its moderate undulations, frequent granitic boulders and sandy to gravelly soil of low fertility, providing generally poor growing conditions for plants.

Because of the low fertility, the vegetation in this zone tends to be more heathy and scrubby than surrounding areas, with lower trees – particularly Bundy (or Long-leafed Box) and Mealy (or Silver-leafed) Stringybark.

In Knox, the only native vegetation in this zone is confined to Lysterfield Park, which was not visited in the project. The Department of Sustainability & Environment's BioMaps indicate that the only EVC present is Grassy Forest, and that this was also true prior to European settlement. Cook (1994) indicates that there may also be a trace of Heathy Woodland on the western shore of Lysterfield Lake.

3.2.6 Lysterfield Hills

The Lysterfield Hills form a prominent ridge at the northwestern corner of the Lysterfield Granodiorite geological formation. It is characterised by steep slopes, heavily dissected terrain and gritty soil of rather poor fertility and structure.

This zone could be further subdivided into the steeper northwestern side of the ridge with its naturally sparse and stunted vegetation, and the opposite, sheltered side with its broader valleys and lusher vegetation.

The EVCs that once covered nearly all the northwestern side are Valley Grassy Forest and a rare variant of Grassy Dry Forest (see Appendix A). There are also minor gullies on private land whose vegetation could not be inspected in this project, and there is conflicting evidence about what EVCs may belong there.

The EVCs on the sheltered side were also not inspected in this project because no permission was given to access the private land and the Parks Victoria land is outside the project's scope. Subject to an expert inspection of the area, it seems that the EVCs there are:

- Damp Forest in small areas at the headwaters of several gullies;
- Herb-rich Foothill Forest elsewhere in the gullies; and
- Grassy Forest elsewhere.

3.3 Habitat Types

The Department of Sustainability and Environment has developed a statewide vegetation classification scheme based on 'Ecological Vegetation Classes', or EVCs, that were introduced for the 'Old Growth Study of East Gippsland' (Woodgate *et al.* 1994). Each EVC is intended to be characterised by a fairly consistent set of major ecological features, e.g. the 'Wet Forest' EVC represents hilly environments with high rainfall, a very tall, fairly dense canopy of trees, and below them are lower trees, many vines and abundant tree-ferns and other ferns. A single EVC may embrace multiple 'floristic communities' that have different combinations of flora species, provided that the ecological functions are sufficiently similar.

The EVCs that have been identified in Knox during the present project are listed in Table 2 in order of the standard EVC numbering system (with all the wetland EVCs aggregated within EVC 74 and Sedge Swamp aggregated with Swampy Woodland). Their identifying features and other characteristics are described in Appendix A.

EVC	EVC	Bioregional Conservation Status		No. of	Ecolo	gical Co	ndition (Section 2	2.4.4)
No.	Name	Gippsland Highlands Plain Southern Fall		Sites	A (excellent)	B (good)	C (fair)	D (poor)	Total, A-D
8	Wet Heathland	_	Depleted	1	0.09	0.09	0	0	0.18
16	Lowland Forest	Vulnerable	Least Concern	6	0.44	2.92	2.76	1.98	8.11
18	Riparian Forest	Vulnerable	Least Concern	8	0	1.60	4.05	5.00	10.65
22	Grassy Dry Forest	-	Least Concern	6	0	11.96	19.59	19.33	50.88
23	Herb-rich Foothill Forest	Vulnerable	Least Concern	10	6.30	11.05	20.84	14.45	52.64
29	Damp Forest	Least Concern	Least Concern	3	4.03	6.12	19.30	7.31	36.76
45	Shrubby Foothill Forest	_	Least Concern	1	1.00	0.30	0.20	0	1.50
47	Valley Grassy Forest	Vulnerable	Vulnerable	7	0	1.63	10.63	14.20	26.45
53	Swamp Scrub	Endangered	_	6	0.90	2.01	27.90	9.23	40.04
56	Floodplain Riparian Woodland	Endangered	_	5	0	1.10	5.85	8.77	15.72
74	Wetland	Endangered	Endangered	32	3.81	4.95	7.21	5.06	21.03
83	Swampy Riparian Woodland	Endangered	Depleted	10	0	1.53	5.74	6.62	13.89
127	Valley Heathy Forest	Endangered	Endangered	68	4.18	10.42	39.54	47.65	101.80
128	Grassy Forest	Endangered	Vulnerable	19	6.08	14.07	35.10	28.56	83.81
937	Swampy Woodland	Endangered	Vulnerable	40	0	3.51	12.97	19.80	36.28
938	Shrubby Gully Forest	-	Vulnerable	1	0	0	0.03	0	0.03
				Totals:	26.83	73.25	211.70	187.96	499.77

Table 2. EVCs identified in Knox, with numbers of hectares present in different ecological condition. A dash in the Conservation Status columns means that the EVC does not occur in that bioregion within Knox.

The areas of each EVC have been estimated or calculated for each of the sites described in Volume 2. These figures have been further broken down into areas at each level of ecological condition (categories A to D, Section 2.4.4). The figures for each site are given in Volume 2. Aggregate figures appear in Table 2 and are graphed in Figure 3.

To translate a number of hectares in the table to a percentage of Knox's total area, divide by 114. For example, the total area with vegetation having excellent or good ecological condition is $(26\cdot83+73\cdot25)\div114 = 0\cdot88\%$ of Knox.

The EVCs listed in Table 2 do not exactly match those mapped on the BioMaps described by Oates and Taranto (2001), and the sites at which each EVC appears on the BioMaps differ from those identified here. Oates and Taranto warn on p.24 of their report that the majority of Knox, covered by the Kilsyth and Lysterfield BioMap sheets, was not visited for field assessment, and that current-day EVCs were instead assumed to be the same as those inferred to have been present prior to 1750. However, in reality, the pre-1750 EVC BioMaps and the extant EVC BioMaps disagree markedly.

This highlights the need to treat EVC classifications with caution. Even though EVCs offer the best classification system for native vegetation currently available for the purposes of this report, it is important to now consider the system's limitations.

The EVC classification scheme is still under development. In many cases EVC names are being applied inconsistently by different people, with the greatest disparities arising between botanists in different parts of Victoria. One should therefore allow for changes in the classification scheme as botanists and ecologists come to a more common understanding of how it should work.

There are also other reasons why people may classify vegetation differently from each other using the EVC system:

- Some vegetation is intermediate between two or more EVCs;
- Some vegetation is so heavily modified from its natural state that it is only a shadow of its former self, and it can be extremely difficult to relate it to any EVC. (EVCs are not devised for heavily modified environments.);
- Some quite natural vegetation does not fit any recognised EVC, in which case some people may classify it as one of several similar EVCs, some people may struggle with classification and choose an inaccurate EVC, and others may classify it outside the EVC system altogether (as with the Sedge Swamp recognised in Appendix A);
- Some groups of related EVCs are given collective names (often ending in the word, 'complex'), in addition to the names of the various members of the groups. This is particularly so in the case of flood-prone vegetation; and
- Some vegetation has been classified by some investigators based on aerial photography and other indirect means, which can give a different result from classifications determined by an expert making a close inspection in person.

3.3.1 The Importance of Threatened EVCs in Knox

Based on data from this study and that of Oates and Taranto (2001), approximately 100 square kilometres of Knox once supported nine or ten EVCs that are now listed as Endangered, at the national or bioregional scale. This represents 88% of the whole municipality. Vulnerable EVCs account for much of the remaining 12% of Knox. Consequently, most occurrences of native vegetation in Knox represent an endangered or vulnerable EVC.

The main reason for these EVCs being listed as endangered or vulnerable is that they have been subject to extensive clearing and fragmentation, leaving only a tiny proportion of their original extent. They are not adequately reserved in parks to give confidence in their medium- to long-term survival. They can ill afford any further losses, even in the case of rather small or degraded examples that are scattered all around Knox.

The Victorian government's main policy for native vegetation, known as the Native Vegetation Framework (NRE 2002a), adopts the principle that all but the smallest or most degraded remnants of Endangered EVCs are of high or very high conservation significance, and the sites in which they occur are all deemed to be of at least 'State' significance according to the Department of Sustainability & Environment's criteria.

3.4 Plant Species

Appendix B contains a table of the 461 indigenous plant species that the author accepts as validly recorded within Knox. Subspecies and varieties bring the total to 465 taxa. Thirty-nine of the listed species have not been seen recently in or near Knox by the author, and they are marked in the table. Another eighteen that have been reported within Knox were seen recently by the author within a few hundred metres of Knox, but not within the Knox boundary.

Twenty-seven plant species can be presumed (to scientific standards) to have become extinct from Knox, and a few other species are probably extinct from Knox but have not been adequately investigated to meet the scientific criteria. There are about a dozen unlisted species that the author believes are probably present in Knox but remain undetected (despite our database of almost 27,000 records). It is therefore estimated that there are 440 indigenous plant species presently occurring in Knox. There are also more than a dozen hybrids.

Appendix B includes columns to show which species are:

- Listed as threatened (i.e. Critically Endangered, Endangered or Vulnerable) under the *Environment Protection and Biodiversity Conservation Act 1999* for the whole of Australia;
- Listed as rare or insufficiently known in the whole of Australia by Briggs and Leigh (1996);
- Listed as rare or threatened in the whole of Victoria by the Department of Sustainability & Environment (2004);
- Listed as threatened or extinct in the Port Phillip and Westernport Native Vegetation Plan for that Catchment Management Area (which only applies to species not in the previous categories);
- Inferred to be rare or threatened in the Melbourne area on the basis of no more than ten locality records (excluding very old records) appearing in '*Flora of Melbourne*' (SGAP, 1993), whose area of coverage extends to Langwarrin, the Dandenong Ranges, Coldstream, Hurstbridge, Craigieburn, Sunbury and the Werribee River; and
- Determined to be rare, threatened (etc.) in Knox according to criteria described in Section 3.4.2.

3.4.1 Rare or Threatened Nationally or Statewide

The Victorian and national lists of rare or threatened plants (as summarised by DSE 2003a) include eleven species, one subspecies, one minor variant and one hybrid that are recorded from Knox, as listed in Table 3. The table includes the conservation status of these plants in Knox (i.e. at the municipal scale), which has been assigned as described in subsection 3.4.2.

Table 3. Plants of Knox that are Rare or Threatened Statewide or Nationally.

In the 'Status' column, 'C' means critically endangered, 'E' means endangered, 'K' means uncertain, 'R' means rare, 'S' means secure, 'V' means vulnerable, 'X' means presumed extinct and '-' means no rating has been assigned.

Species Name	Status in Aust / Vic / Knox	Comments
Prasophyllum frenchii (Slaty Leek-orchid)	E/E/X	Collected in Boronia by orchid expert, W.H. Nicholls in 1926.
Dianella amoena (Matted Flax-lily)	E/E/C	The author found one in Starlight Reserve in 2000 and a sus- pected one beside Napoleon Rd in Rowville in 2002, but the identity is not confirmed because fertile material was absent.
<i>Caladenia oenochila</i> (Wine-lipped Spider- orchid)	K/V/E	Reported in Bayswater and Boronia three times in 1909-29, and may remain near Dandenong Ranges National Park (in which the author has seen it recently).
Genoplesium despectans (Sharp Midge-orchid)	K/-/C	Collected in Bayswater by A.B. Braine in 1946. Seen by J.A. Jeanes in Boronia (c.1985) and Wantirna (c.1995), and by Mr A.N. Paget in Wantirna in 1985.
Eucalyptus yarraensis (Yarra Gum)	R/K/E	The Dandenong Ck valley is a stronghold for the species. The Mitcham-Frankston Tollway threatens many in Knox.
Prasophyllum lindleyanum (Green Leek-orchid)	- / V / X	Collected by orchid experts in Bayswater 3 times in 1906- 1930. Also seen recently by the author on Mt Dandenong.
Eucalyptus fulgens (Green Scentbark)	-/V/E	A small population reported by Lynlee Smith in 2002, well outside the previously accepted range of this species.
Glossostigma cleistanthum (a mud-mat)	-/R/E	Discovered 2004 in abundance at Lakewood Nature Reserve; evidently not previously recorded within 200 km.
Thelymitra luteocilium (Fringed Sun-orchid)	- / R / X	Claimed in <i>Flora of Melbourne</i> to have been in Bayswater.

Species Name	Status in Aust / Vic / Knox	Comments
Pterostylis × ingens (Sharp Greenhood)	-/R/X	Seen in Boronia by Mr J.A. Jeanes (who believes the colony to have been destroyed in the 1980s). Claimed in <i>Flora of Melbourne</i> to have been in Bayswater and Wantirna South.
(Austro-)Stipa rudis ssp. australis (a spear-grass)	- / R / V	Discovered at four sites in Knox by Dr Lorimer.
Acacia leprosa (Cinnamon Wattle) - Dandenong Ranges variant	- / R / S	Abundant between North Ringwood, Boronia, Belgrave South and Woori Yallock; not at all threatened.
Montia fontana (Water Blinks)	-/K/C	Discovered at Koolunga Native Reserve, Oct 2004. The only prior record from the Melbourne area was Croydon in 1940.
Prasophyllum pyriforme (Silurian Leek-orchid)	- / K / X	Collected in Bayswater by A.B. Braine in 1930.

Note that seven of the fourteen entries in the table are orchids and that five of these orchids can be presumed to be extinct in Knox. This reflects the nationwide tendency for orchids to lead the extinctions of plant species.

The species, *Senecio glandulosus*, has not been recognised to occur in Victoria until a 2004 review of the genus by Thompson (2004). It was found at Lakewood Nature Reserve. Once its conservation status in Victoria and Australia is assessed, it may turn out to be rare or threatened.

The only plant species in Appendix B that is listed under the *Flora and Fauna Guarantee Act 1988* is *Prasophyllum frenchii*, of which there is only one record, from 1926. Even in the very unlikely event that this species is rediscovered in Knox, it still has no Action Statement under the Act to guide what action to take.

3.4.2 Rare or Threatened in Knox

Table 4. Criteria for Categories of Threatened Specie	es, from the EPBC Regulations 2000.
---	-------------------------------------

Criterion		Category		
		Critically Endangered	Endangered	Vulnerable
	The probability of its extinction in the wild is at least:	50% in the immediate future	20% in the near future	10% in the medium- term future
or	It has undergone, is suspected to have undergone or is likely to undergo in the immediate future:	a very severe reduction in numbers	a severe reduction in numbers	a substantial reduction in numbers
or	Its geographic distribution is precarious for the survival of the species and is:	very restricted	restricted	limited
or	The estimated total number of mature individuals is:	extremely low	very low	low
or	The estimated total number of mature individuals is:	very low	low	limited
	and either:			
	(a) evidence suggests that the number will continue to decline at:	a very high rate	a high rate	a substantial rate
	or			
	(b) the number is likely to continue to decline and its geographic distribution is:	precarious for its survival	precarious for its survival	precarious for its survival

The copious field data gathered during this study allows a reliable determination of the rarity or conservation status of each species within Knox, and the author's determinations are included in Appendix B. The criteria applied for the categories of Critically Endangered, Endangered and Vulnerable are almost the same as in Regulation 7.01 of the *Environment Protection and Biodiversity Conservation Regulations 2000* (reproduced in Table 4).

The one deviation made to the application of Table 4 for Knox is that the 'reduction in numbers' mentioned in the second criterion is taken here to exclude reductions that occurred more than a decade ago. This is because almost all species in Knox have undergone a substantial reduction in numbers as a result of widespread urbanisation, and it would not be reasonable to classify them all as vulnerable.

In addition to the categories defined by Table 4, the following other categories have been adopted here:

- *Presumed Extinct* Not located for fifty years despite searching, or else all known habitats have been destroyed more recently with no hope of regenerating;
- *Rare* Not in the categories above, but recorded in Knox at fewer than ten sites where the species could be reasonably expected to survive and reproduce for more than one or two decades without the implementation of conservation measures;
- Insufficiently Known Very few secure populations are confirmed, but this may be due to inadequate data;

Secure - None of the above, but not widespread and abundant;

Least Concern - Widespread and abundant.

Appendix B includes a classification of every indigenous plant species according to one of the above categories. Figure 4 provides a graphical summary of the number of species in each category. One is immediately struck by the large proportion of plant species that are listed as threatened with extinction in Knox - 53% of all the species that are not already extinct. Most of these species are present at very few sites, and many have only critically small populations. One in five of all known extant species in Knox are considered to be Critically Endangered in the sense of Table 4, facing imminent extinction from Knox. This is not a natural situation: It is an indication that Knox faces massive loss of plant species in the next decade or so, unless preventative measures are taken.

Conservation of native flora in Knox is at a critical stage, and this has grave implications for native fauna. It is still realistic to aim to maintain the existence of every indigenous plant species presently in the municipality, but it appears that more than quarter (and perhaps as much as half) of these species could be lost within two or three decades if no preventative action is taken.

It is therefore recommended that the conservation status of plant species in Knox should be taken into consideration when Council is assessing proposals for works or land development that may adversely affect native vegetation. Whenever possible, any actions that may compromise a species that is listed as Critically Endangered, Endangered or Vulnerable in Knox should be compensated by actions that cause a net increase in the security of that species, e.g. by propagation, improved protection and removal of threats like environmental weeds. This concept is included in the proposed overlay schedules in the Appendices to this report.

The main step that is required to prevent extinctions of plant species from Knox is to retain and protect native vegetation that forms their habitat, particularly within the sites of biological significance detailed in Volume 2. This is also critical for conservation of native fauna, and for biodiversity generally.

3.4.3 Environmental Weeds

A table of 234 weed species found in remnant vegetation in Knox appears in Appendix C. There is a column in the table to show the severity of each species in a statewide context (as per Carr *et al.* 1992) and in a municipal context (using information from the fieldwork described in Section 2.4). A small proportion of the listed species have negligible environmental impact in Knox, and the remainder can be called environmental weeds.

Environmental weeds are a major cause of loss of indigenous flora and fauna species. Some weed species are less serious in Knox than in other parts of the state, and so the severity rating for Knox can be lower than that of Carr *et al.* A few weed species are more serious than realised by Carr *et al.*; for example, it was thought in 1992 that the only infestation in Victoria of Square-stem St John's Wort (*Hypericum tetrapterum*) was in Yellingbo, but Dr Lorimer has since discovered numerous other outbreaks, including in Knox at eleven sites along Dobsons Creek, Dandenong Creek, Monbulk Creek and Corhanwarrabul Creek and at Lakewood Nature Reserve.

Table 5 summarises the environmental weed species that fall into the category of 'Very Serious' in Knox.

Table 5. 'Very Serious' environmental weed species in Knox.

Species regulated under the Catchment and Land Protection Act 1994 are underlined.

Acacia longifolia var. longifolia (Sallow Wattle)	Hypericum tetrapterum (St Peter's Wort; Square-stem St John's Wort)
Allium triquetrum (Angled Onion)	Juncus articulatus (Jointed Rush)
Anthoxanthum odoratum (Sweet Vernal-grass)	Lonicera japonica (Japanese Honeysuckle)
Asparagus scandens (Asparagus Fern)	Myriophyllum aquaticum (Parrot's-feather)
Briza maxima (Large Quaking-grass)	Oxalis incarnata (Pale Wood-sorrel)
Calystegia silvatica (Greater Bindweed)	Oxalis pes-caprae (Soursob)
Cestrum elegans (Red Cestrum)	Paspalum dilatatum (Paspalum)
Chrysanthemoides monilifera monilifera (Boneseed)	Paspalum distichum (Water Couch)
Coprosma robusta (Karamu)	Phalaris aquatica (Toowoomba Canary-grass)
Crataegus monogyna (Hawthorn)	Pinus radiata (Monterey Pine)
Crocosmia × crocosmiiflora (Montbretia)	Pittosporum undulatum (Sweet Pittosporum)
Cytisus scoparius (English Broom)	Ranunculus repens (Creeping Buttercup)
Delairea odorata (Cape Ivy)	Romulea rosea (Common Onion-grass)
Ehrharta erecta (Panic Veldt-grass)	<u>Rubus discolor</u> (Blackberry)
Erica lusitanica (Spanish Heath)	Salix species (the Crack Willow group)
Galium aparine (Cleavers)	Tradescantia albiflora (Wandering Jew)
Genista monspessulana (Montpellier Broom)	<u>Ulex europaeus</u> (Gorse or Furze)
Hedera helix (Ivy)	<u>Watsonia meriana var. bulbillifera</u> (Bulbil Watsonia)
3.5 Fauna

Appendix D provides a list of fauna that have been reliably recorded in Knox, and summary statistics are given in Table 6. As stated in Sections 1.5 and 2.1, there was no concerted effort to detect fauna during this study's fieldwork, so many of the species tabulated in Appendix D were not detected in this study.

Fauna Group	Number of Native Species	Number of Introduced Species	Number of Species Threatened in Vic.
Birds	218	13	29
Mammals	30	9	1
Frogs	11	1	2
Reptiles	20	0	2
Fishes	8	7	1
Butterflies	27	1	1

Table 6. Summary statistics of Knox's fauna.

3.5.1 Birds

The author has noticed some marked changes in the relative abundance of bird species in Knox during the past one or two decades. Some native species have undoubtedly declined in abundance and distribution, while species such as Rainbow Lorikeet, Little Corella and Yellow-tailed Black-cockatoo have increased greatly. In fact, the lorikeet and the corella have changed from being rare visitors twenty years ago to now being abundant, resident birds in urban parts of Knox. These observations mirror the results found in the 'Australian Terrestrial Biodiversity Assessment 2002' (National Land and Water Resources Audit 2002).

A disproportionate number of rare or threatened birds have been reported in a few wetlands in Knox, notably in along the Dandenong Creek and at the lake in Lakewood Nature Reserve. This highlights the importance of both stream corridors and lakes – even artificial lakes – for fauna conservation.

3.5.2 Mammals

The paucity of mammal surveys in Knox makes it hard to discern trends in mammal abundance or distribution. Indeed, several native species are likely to have been overlooked altogether, particularly among the bats.

Nevertheless, it seems very likely that Southern Brown Bandicoots are probably extinct from Knox, and anecdotal evidence of residents in Lysterfield suggests that Eastern Grey Kangaroo numbers have declined in recent years. On the other hand, it is pleasing to note that Sugar Gliders are still present in Rowville and Wantirna.

The Common Brushtail Possum and Common Ringtail Possum are well adapted to an urban existence and in no threat of decline. Some other arboreal mammals in Knox rely on indigenous trees or sometimes large trees that are not indigenous, highlighting the importance of protecting large trees. Eastern Grey Kangaroos should continue to move between Lysterfield Park and nearby large properties as long as such properties remain and retain some eucalypt cover. The other native mammals that are present in Knox rely for their existence on remnant vegetation with understorey, probably entirely within Sites 1-100 in Volume 2. The protection of these sites is therefore very important for conservation of native mammals in Knox.

Platypuses rely on the quality of their stream habitat, as well as the adjoining native vegetation. This contributes to the importance of protecting the environmental values of streams. Platypus surveys in the Corhanwarrabul Ck – Monbulk Ck system in the last few years indicate a decline, coinciding with major property development along the streams. It is not clear to what degree the decline in Platypus numbers reflects a long-term decline in the overall environmental qualities of this stream system.

Native mammals appear to face a significant threat from harassment and attacks by pets, but this cannot be confirmed without a focused study.

3.5.3 Frogs

Observations of frogs in Knox have been rarely recorded until the last few years, which have been marked by a prolonged drought that has varied from year to year in its intensity. This has made it impossible to discern trends in the abundance and distribution of frog species in Knox. There are also several prime sites for frogs that have not been investigated, such as the lake at Lakewood Nature Reserve.

However, about a dozen sites in Knox have been inspected as part of the Melbourne Water Frog Census on one or more occasions since spring 2001, providing baseline data for the future. Knox City Council has contributed to the program by obtaining a grant to purchase 10 automated frog call boxes, which are to be loaned to the census program. In exchange, Melbourne Water will provide Council with the frog data to enter into the Knox Wildlife Atlas database.

Wetlands that are most likely to be important for conserving frog species are also important for waterbirds, and are principally along Dandenong Creek and at Lakewood Nature Reserve. The section of Blind Creek from near Timmothy Drive in Wantirna to Dandenong Creek may also be important.

3.5.4 Reptiles

Reptiles are inadequately reported to be confident of either the full range of species in Knox or any changes in their abundance or distribution.

Of the two threatened species recorded, the Swamp Skink has been well studied at Liverpool Road Retarding Basin in Boronia and the Tree Goanna is presumably an occasional visitor to Knox from the Dandenong Ranges National Park in the Shire of Yarra Ranges.

Knox's reptile species rely heavily on remnant native vegetation with understorey and logs, practically all of which is in Sites 1-100 in Volume 2. This makes protection of these sites very important for conservation of reptiles in Knox, as in the case of mammals.

3.5.5 Fishes

There has been a substantial degree of expert investigation of fish in Knox's main streams in recent years, providing a fairly sound basis for the inventory in Appendix D. It is probably not important that there has been much less investigation of lakes, such as Caribbean Lake, Cogley Lake, Sutton Lake, Hill Lake and at Lakewood Nature Reserve.

The fish fauna of Knox is largely exotic and the stream habitat is largely heavily modified by straightening and barrel-draining of watercourses and the construction of barriers that impede migration of fish.

Although the studies of fish in Knox are mostly in the past decade, and hence do not span a very long period of time, there is enough evidence for the researchers involved to have concluded that the most significant fish species, the nationally vulnerable Dwarf Galaxias, has suffered a massive population crash and possible extinction from the Dandenong Creek catchment. Changes in other species cannot be discerned from the data gathered in this study.

There is some hope for an improvement in the fish fauna of Knox if changes are made to the weir at Pillars Crossing in Dandenong South. This weir is the main barrier against fish migration between Dandenong Creek and Port Phillip Bay, and Melbourne Water has commissioned a study to investigate the benefits, costs and engineering options for changing this.

3.5.6 Invertebrates

Most of the butterfly records gathered in this study were from Jan Jordan, and most of the remaining records come from Maria Belvedere. Exemplary though their work is, the data do not provide adequate geographical coverage of Knox to represent a very comprehensive inventory for the municipality. There are also very few records from prior to the 1990s, so trends are difficult or impossible to discern except in the case of the Swordgrass Brown, whose numbers and distribution have increased due to a recovery project conducted by the Knox Environment Society in conjunction with Knox City Council.

There is one very notable old record: the endangered Small Ant Blue butterfly recorded in Ferntree Gully, Bayswater and Heathmont. The only date that could be found for any of these records is 1942, and while the species may therefore be extinct from Knox, this should not be concluded without an investigation.

Because most butterfly larvae depend on specific indigenous food plants, conservation of butterflies requires retention of remnant native vegetation with understorey. As in the cases of mammals and reptiles, this adds to the importance of Sites 1-100 in Volume 2.

Invertebrates other than butterflies are studied even less than butterflies, so the only species noted here are two species that that the Department of Sustainability & Environment suspects (but cannot confirm) to be rare or threatened. These are the caddisfly *Plectrotarsus gravenhorstii* and the Dandenong Freshwater Amphipod, *Austrogammarus australis*. The only record of the caddisfly in Knox was in 1943 in Bayswater and no evidence could be found in this study of any subsequent attempt to find it. The amphipod has been found at every attempt to find it on Dobsons Creek in Sassafras (Knox's eastern extremity), including recently. However, entomologist Phil Papas says that its presence there is attributable to the forest in the Dandenong Ranges National Park (Shire of Yarra Ranges) immediately upstream of the detection site, rather than because of suitable habitat in Knox.

3.6 Sites

Volume 2 includes detailed descriptions and maps of 113 sites of biological significance recommended for protection under overlays in the Knox Planning Scheme (Section 5.5), and brief information about an additional five sites (or groups of sites) that are not recommended for protection under an overlay.

Sites 1 to 113 (the ones recommended for overlays) are shown on a key map on page 2 of Volume 2, which shows the distribution and size of Knox's most biologically significant areas. (However, note that size can sometimes be misleading, as in the case of Waverley Golf Course, which is large overall but has proportionally little natural habitat due to fragmentation by fairways, greens and other developed areas). The five other sites (numbers 114 to 118) are all either small or have negligible native understorey, and collectively contain much less natural and semi-natural habitat than Sites 1-113.

Only one site – the Dandenong Valley Parklands – is of National significance according to the criteria discussed in Section 2.6. This very high level of significance results from the large population of the nationally rare Yarra Gum (*Eucalyptus yarraensis*), and in other respects the site is of State significance. Sixty-one other sites are of State significance, thirty are of Regional significance and twenty-one are of Local significance. By far the most common reason for a site achieving a rating of State or Regional significance is the presence of a regionally endangered EVC, particularly Valley Heathy Forest or Swampy Woodland.

Table 2 in Section 3.3 gave a summary of the distribution and total areas of the various habitat types in Knox. It can be inferred from the table that:

- The total area with vegetation having excellent biodiversity is 0.24% of Knox's total area;
- The total area with vegetation having excellent or good biodiversity represents 0.88%;
- The total area with vegetation having at least fair biodiversity represents 2.7%; and
- The total area of vegetation in any of the conditions A-D (even with just a few indigenous species that are not able to reproduce) represents 4.4% of Knox.

A little more than half of the native vegetation in Knox occurs on public land. The largest areas on private land are the Lysterfield Hills quarries (part of Site 81) and in 'The Basin - Sassafras Forest Precinct' (Site 18) along the Basin-Olinda Rd and Doongalla Rd.

<u>Eighty-two of the 118 sites identified in this study contain plant species that are threatened (not just rare) in</u> <u>Knox or more widely. The loss of any one of these eighty-two sites is likely to either render a species extinct</u> <u>from the municipality (or more widely), or significantly increase the risk of this happening.</u>

Knox is therefore at the stage where many indigenous plant species are poorly conserved and threatened with local extinction. To avoid local extinctions will require strong avoidance of removal of native vegetation in all sites of biological significance (Section 4.4), coupled with active efforts to increase the security of the threatened species (Section 4.12).

Many sites are also known to support, or be visited by, fauna species that are threatened regionally or more widely. Native fauna generally suffer from declining native vegetation. However, this study does not provide hard statistics about fauna because quantification of the status of fauna species in Knox would require much more fieldwork.

4. Issues Affecting Biodiversity

The main conclusions about the Australian environment appearing in the Executive Summary of 'Australia: State of the Environment 1996' (Alexander and Taylor, 1996) are:

- 'The loss of biological diversity is perhaps our most serious environmental problem'.
- 'Habitat modification, particularly removal of native vegetation for agriculture, urban development and forestry has been, and still is, the most significant cause of loss of biodiversity'.
- 'Introduced plants are an acute and insufficiently appreciated ecological problem'.
- 'The most significant impediment to the conservation and management of biodiversity is our lack of knowledge about it and the effects of the human population and activities on it'.

In these respects, Knox is representative of Australia as a whole, except that the issues of agriculture and forestry do not currently apply in Knox, and this study has hopefully made worthwhile progress on the last of the four points above at the municipal scale.

4.1 Protection of Habitat in Reserves

Knox City Council has many bushland reserves, managed well for biodiversity values. Dandenong Valley Parklands and Lysterfield Park are managed well by Parks Victoria. These sites provide an important core for conservation of biodiversity in Knox (although not enough on their own – see Section 4.2).

The main pressures on the biological values of these reserves are:

- Environmental weeds;
- Trampling and cutting of vegetation by people moving off paths;
- Dumping of garden waste;
- Other vandalism;
- Eucalypt dieback; and
- Pressure to construct or maintain firebreaks within the native vegetation.

These issues are each discussed individually in Sections 4.3-4.13.

4.1.1 Management Plans

Knox City Council has several management plans for its bushland reserves. The one by Lorimer (2001a) deals with fire management and related biodiversity issues in seven reserves. Reid *et al.* (1997b) deal with vegetation along Knox's main waterways (excluding Dandenong Valley Parklands). Lorimer (1998) deals with native vegetation along some of Knox's roadsides. More detailed plans have been prepared, or are in preparation, for some individual reserves:

- Blamey Reserve, Boronia (Lorimer, in preparation);
- Blind Creek Billabong, Ferntree Gully (Reid et al. 1997a);
- Cathies Lane Bushland, Wantirna South (Lorimer 1997);
- Coppelia Street Bushland, Wantirna South (Lorimer 1999a);
- Heany Park, Rowville (for which there is presently only a draft flora and fauna report);
- Koolunga Native Reserve, Ferntree Gully (Lorimer, in preparation);
- Starlight Reserve, Rowville (Lorimer 2000a); and
- Stringybark Reserve, Wantirna (Lorimer, in preparation).

Other Council reserves that could benefit from management plans are (in decreasing order of priority)^{*}:

- Lakewood Nature Reserve, Knoxfield;
- Timmothy Drive Bushland, Wantirna South;
- The Ardnehue Rd Land abutting Dandenong Valley Parklands in Wantirna;
- Millers Reserve, Boronia (north of the oval);
- 'The Ravine' in The Basin (in conjunction with the adjoining National Park land);
- Vaughan Rd Bushland, Ferntree Gully;

Some of the reserves need only rudimentary management plans containing little more than formalisation and refinement of, and small extensions to, actions that are already planned or being undertaken.

4.1.2 Monitoring

Council has a formal monitoring program in place for seven bushland reserves (Lorimer 1999b, 2002). The results of comparison between data gathered between 1999 and 2002 showed that there had been some marked changes in proliferation of some species of plants, and that the vegetation quality was maintained well.

There would be benefit in extending the monitoring program to some other reserves that are experiencing rapid change (e.g. Stringybark Reserve in Wantirna), finances permitting.

4.2 Protection of Habitat Off Reserves

As the National Strategy for the Conservation of Australia's Biological Diversity (DEST, 1996) says, 'Australia's biological diversity and the threats to it extend across tenure and administrative boundaries. ... The conservation of biological diversity is best achieved *in-situ* and requires integrated and consistent approaches across freehold and leasehold and other Crown lands'.

Analysis of the columns of Appendix B reveals that ninety-seven plant species listed as threatened in Knox (not just rare) are not found in reserves managed for conservation. This represents 22% of all extant indigenous plant species in Knox, and includes fifty-two species that are critically endangered in Knox.

Another telling figure is that 42% of all plant species that are threatened in Knox are not found in reserves managed for conservation.

Some of the threatened species that are not represented in reserves are highly reliant on sites owned by government, such as schools, roadsides, utility installations or freeway reservations. In many cases, private residential land is critical.

The Silver Banksia, *Banksia marginata*, provides a good example. It is present in two school grounds, two roadsides and on several private residential properties in Boronia. The private properties make a substantial contribution to the total population of the species in Knox.

Council maintains a relationship with some agencies of government regarding the biologically significant land that they own, particularly Melbourne Water and VicRoads. Relationships with schools regarding significant vegetation are less well developed, partly because the significance of their vegetation has not been fully appreciated prior to this study. It is hoped that this report will provide a basis for Council to provide greater encouragement for such public landowners to play a more active role in conserving the municipality's biodiversity.

The large private properties in Knox's eastern extremity, east of Sheffield Rd and Wicks Rd in The Basin, play a particularly important role for conserving the municipality's biodiversity, because they include the only habitat for various ferns and other plants of high-rainfall forests, as well as the fauna of such forests. This

^{*} Subject to discussion with Council staff.

importance is tempered to some degree by the fact that these properties are adjacent to much larger areas of the same forest in the Dandenong Ranges National Park, in the Shire of Yarra Ranges.

Similar comments apply to some properties near Lysterfield Park.

Private landowners can make or destroy habitat, depending on their actions. It is desirable for Council to encourage the good examples of habitat creation and restoration that can be seen on some Knox properties.

The National Strategy for the Conservation of Australia's Biological Diversity (DEST, 1996) recommends and lists measures to:

'ensure that adequate, efficient and cost effective incentives exist to conserve biological diversity. These would include the use of appropriate market instruments and appropriate economic adjustments for owners and managers, such as fair adjustment measures for those whose property rights are affected when areas of significance to biological diversity are threatened'.

The measures include cost reimbursements and rate rebates to encourage people to improve conservation of native vegetation. There are also now tax incentives available for covenanted properties.

Maroondah City Council has a 'Biodiversity Rating Concession Program' to provide financial and practical assistance to private landowners for managing and protecting habitat. From a biological perspective, such a scheme would be equally appropriate in Knox.

4.3 Weeds

The weeds of concern in this study are 'environmental weeds'; that is, plants which impair the biodiversity or ecological functions of natural or semi-natural habitats. They are widely regarded as one of the most serious nature conservation problems in Victoria and Australia (e.g. Carr *et al.* 1992, Alexander and Taylor 1996, National Land and Water Resources Audit 2002). The author regards environmental weeds as the worst threat to nature and biodiversity in Knox, followed by native vegetation removal (Section 4.4).

Fortunately, weed problems are being steadily diminished in many Council reserves in Knox, thanks to active management.

The main threats to Knox by environmental weeds are:

- Out-competing mature indigenous plants;
- Preventing germination and establishment of indigenous plants;
- Making habitat less fit for native fauna and more fit for introduced fauna, including pests which further threaten indigenous species; and
- Altering the cycling of nutrients and organic matter.

These processes are interrelated.

Table 7 provides a list of species that are tractable, fairly recognisable, very serious and widespread on private land in Knox, and not likely to draw strong opposition to eradication. These properties are ideal for a publicity campaign.

 Table 7. Environmental weeds recommended for a publicity campaign.

 Species regulated under the *Catchment and Land Protection Act 1994* are underlined.

Asparagus scandens (Asparagus Fern) <u>Chrysanthemoides monilifera monilifera</u> (Boneseed) <u>Crataegus monogyna</u> (Hawthorn) <u>Cytisus scoparius</u> (English Broom) <u>Genista monspessulana</u> (Montpellier Broom) Lonicera japonica (Japanese Honeysuckle) Pittosporum undulatum (Sweet Pittosporum) Tradescantia albiflora (Wandering Jew) <u>Watsonia meriana var. bulbillifera</u> (Bulbil Watsonia) Such a campaign could be conducted jointly between the Department of Primary Industries, Knox City Council and perhaps adjoining Councils. Effort should be concentrated at times of the year when most of the species are in flower, to aid identification and reduce seed production.

Asparagus Fern and Hawthorn are the only species listed above that are not included in a booklet co-produced by Knox City Council in 1999, titled 'Pest Plants – Guide to Identification and Management of environmental weeds in Knox and Maroondah'.

In the case of Sweet Pittosporum, the emphasis of the campaign should be on female plants because males do not spread seed. This means that only about half of a typical infestation of mature plants needs to be removed. It should also be recognised that none of the listed species is an environmental problem in parts of Knox with no nearby native vegetation. 'Nearby' in this context depends on the species of weed, with berry-forming species having the largest radius of spread (mostly a few hundred metres).

One incentive for residents to participate in the proposed campaign is to offer free plants to replace listed weeds that landowners remove from sensitive areas. The replacement plants could be indigenous or otherwise.

In its management of bushland reserves and roadsides, Council and Parks Victoria should be paying particular attention to the weeds in Table 7 and all the other weeds rated as very serious in Appendix C. The site descriptions in Volume 2 indicate which weeds pose the most serious threats that were detected in each site.

Apart from environmental weeds being naturally spread, the next greatest cause of spread is dumping of garden refuse, clippings and soil. This kind of dumping can be seen in most bushland reserves within Knox. Many cases involve dumping of clippings or prunings that readily take root (e.g. grass, Wandering Jew) or contain fruits or seeds (e.g. grass clippings, Sweet Pittosporum). Garden soil is also often dumped containing bulbs of introduced species such as Bulbil Watsonia and Angled Onion. In most cases, the garden refuse comes from an adjoining residential block.

One way of responding to this problem would be for Council to produce a brochure about being a good neighbour to bushland reserves, and deliver it to relevant properties. The brochure should cover not just weeds but also fire hazard, nutrient seepage and similar issues (see below).

4.4 Vegetation Clearing and Damage

The Executive Summary of 'Australia: State of the Environment 1996' (Alexander and Taylor, 1996) states:

'Habitat modification, particularly removal of native vegetation for agriculture, urban development and forestry has been, and still is, the most significant cause of loss of biodiversity'.

More recently, the Endangered Species Scientific Sub-committee (ESSS) of the Environment Protection and Biodiversity Conservation Act 1999 stated that 'ESSS is strongly of the view that land clearance has been the most significant threatening process in Australia since European settlement. ESSS is also strongly of the view that land clearance continues to be a significant threatening process and that if it is not controlled it will lead to additional species becoming endangered, to additional species being listed in Schedule 1 [of the Act], and to ecological communities being listed in Schedule 2' (in advice to the Minister for Environment and Heritage about a nomination for listing land clearing as a key threatening process).

Similarly, the 'Australian Terrestrial Biodiversity Assessment 2002' (National Land and Water Resources Audit 2002) states that 'Vegetation clearing is the most significant threat to species and ecosystems in eastern Australia'.

These observations are quite relevant to Knox.

As indicated by Table 2, remnant native vegetation or areas with natural tree cover occupy only 4.4% of the municipality. This figure drops to 2.7% if one excludes sites with only a small number of hardy native plant species and little chance of natural regeneration (i.e. vegetation with ecological condition rating D). Several areas of native vegetation inspected during this study would have been included among the sites of biological significance except that they have been cleared in 2003-4. Permit applications for clearing native vegetation continue to arrive at Council.

As noted in Chapter 3, there are so many EVCs, plants and animals threatened with extinction from Knox or more widely that clearing should be avoided wherever possible, particularly in sites of biological significance. This is reinforced by Victoria's Native Vegetation Framework (NRE 2002a), which is an incorporated document within the Knox Planning Scheme.

There are three main reasons for clearing, of which residential development is presently the greatest. Road construction is spasmodic, but the combination of the imminent construction of the Mitcham to Frankston Tollway and widening of existing roads is likely to become the greatest destroyer over the next few years. Clearing and tree removal by residents is the next greatest cause of loss of native vegetation.

These main causes of native vegetation removal are considered in the following subsections.

4.4.1 Housing Development and Construction

Bulldozing for urban housing has been a major cause of native vegetation loss in Knox for decades. Apart from the obvious effects, bulldozing can remove corridor links, alter drainage patterns, increase siltation of drainage lines and waterways, physically damage the roots and limbs of nearby trees, and leave neighbouring vegetation vulnerable to storm damage and weed invasion.

Most residential development in Knox involves allotment sizes of less than 1,500 m². On lots this small, most or all native vegetation originally present is cleared for house construction, driveways, paths, fences and services. Apart from some mature, healthy eucalypts, any vestiges of native vegetation left after a house is constructed are usually replaced by a traditional European style of garden that is environmentally insignificant or even threatens the natural environment, e.g. by introducing environmental weeds.

Larger allotments allow much greater opportunity for retaining native vegetation, provided that multiple dwellings are not put on the allotments.

The locations of houses and associated construction work on a property should be chosen to minimise the effects on native vegetation, as specified under Victoria's Native Vegetation Framework (NRE 2002a). This should include consideration of any native vegetation on adjacent properties. For example, a house next to a bushland reserve should not be located so close to the reserve as to sever roots of trees in the reserve or lead to pressure for a firebreak that damages native vegetation. Note that this applies even on properties that contain no native vegetation.

Where an attempt is made to retain trees on a construction site, the protection of groups of trees rather than isolated individuals is far more likely to be successful. One reason for this is that trees in groups protect each other from climatic extremes. Once isolated by the removal of surrounding vegetation, trees become far more prone to dieback and storm damage, and they lose some of their attractiveness to wildlife.

Prominent, substantial fencing of retained vegetation during land development is very important for highlighting where it is and keeping machinery out. Plastic tape is typically cut and breached.

House construction on sloping sites can cause greater environmental damage than flat sites if the cut-and-fill method is used, mainly because of vegetation buried under the fill. House construction methods such as split level or pier and beam construction are alternatives that can avoid vegetation damage.

Limiting the size of construction machinery to the smallest practicable reduces damage to bark and trunks where large machines cannot readily be manoeuvred between retained trees.

Boring can be used to install underground services with little or no harm to native vegetation above.

Vegetation that cannot be saved from land development despite careful planning may sometimes be removed and relocated within the site or to another suitable site, or else material can be gathered for propagation. This is particularly important for species that are indicated in Appendix B to be rare or threatened in Knox or more widely.

Runoff containing nutrients and weed seeds is a significant cause of ecological degradation of native vegetation in Knox. Cut-off drains provide a means of intercepting and diverting runoff from gardens or domestic areas so that it does not harm native vegetation downhill.

Document Revision 1.0.0, 20 October 2004

Bonds can be used as a mechanism to promote compliance with permit requirements for protection or restoration of native vegetation associated with all kinds of works, including housing.

Large recreational accessories such as swimming pools and tennis courts can add greatly to the amount of clearing on blocks with native vegetation. So little native vegetation is left in reasonable condition in Knox that any proposals to remove native vegetation for such purposes should be considered very carefully.

4.4.2 Roads

Construction and widening of roads sometimes involves destruction of native vegetation. The greatest threat of this in the short to medium term is for the Mitcham to Frankston Tollway. The widening of Ferntree Gully Rd across Dandenong Creek may also threaten the only known occurrence of the Rough-barked Honey-myrtle (*Melaleuca parvistaminea*) in Knox or its surrounding districts. The greatest road construction threat to Knox's native vegetation in the long term would be if the Healesville Freeway were to be built through the Bateman Street Bush in Wantirna (Site 48 in Volume 2).

Roadside native vegetation may also be damaged by maintenance of roads, footpaths, cables and underground services. To determine what may be at risk from such actions, and to guide protective measures, Knox City Council has conducted a study of most of the more significant roadsides (Lorimer 1998). Most significant roadsides in Knox are signposted as 'significant roadsides' with a warning against potentially damaging actions without consulting Council. Such signs also inform neighbouring residents that the vegetation is valued, and hopefully this stops some residents from doing harmful things to the roadside vegetation.

Machinery operating around roadside native vegetation is apt to compact soil, crush plants, damage trees and leave wheel ruts that hold water and encourage weed growth. Machinery can also spread weed seed and disease organisms in soil carried from other sites.

Parking of vehicles and storage of equipment, materials and supplies for works on roads or roadside services can sometimes do more harm to vegetation than the works themselves. Care should be taken to store these things in places where they will do no harm and not require access through significant vegetation.

Prominent and substantial fencing should be used to protect native vegetation from potentially harmful activities on roadsides.

Trees are often retained during roadside works, only to die later as a result of damage caused by root severance or changes to soil surface levels. (See the companion report, '*Knox Significant Vegetation Study*, Environs Group Pty Ltd, 2004).

Sometimes it is impossible to avoid some clearing of roadside vegetation. The damage can be ameliorated by relocating some of the plants, as described in Section 4.4.1 for housing development. Replanting can also help, but care must be taken on biologically significant roadsides to use indigenous species, and mulch that does not contain seeds of weedy plants such as Willow-leafed Hakea.

The practice of using herbicide or steam to kill vegetation on road edges is tending to replace the traditional method of edge clipping. The herbicide or steam kills native vegetation very effectively, and leaves few plants other than Couch, Gorse and similar hardy weeds. Between sprays, short-lived weeds such as thistles are encouraged. The sparsely vegetated ground is left vulnerable to erosion if it is sloped. Some road edges with healthy indigenous vegetation, just outside Knox, have been converted to eroded, weedy road edges in one or two years. The practice of spraying indigenous vegetation on road edges should be avoided.

As in the case of housing, bonds can be used as a mechanism to promote compliance with permit requirements for protection or restoration of native vegetation associated with works along roads.

4.4.3 Established Residential Land

Remnant indigenous trees are sometimes needlessly destroyed by people who wrongly believe that eucalypts generally, not just particular species, are prone to be dangerous. The decision about whether to remove a tree or

not often needs to balance the risk of damage or injury against the harm to the environment and landscape from the tree's removal.

In cases where tree removal is subject to a planning permit, Council uses professional expertise to decide whether the safety risk of a tree outweighs the benefits of its retention. Various areas of Knox are recommended to come under such planning permit control – See Section 5.5.

Although indigenous trees are retained by many property owners, understorey species are often severely damaged or removed to reduce potential fire hazards, to improve visibility and security, for children's play areas and, most frequently, to make the property look more the way the owner wants it to. Most landowners with indigenous understorey plants probably do not recognise which plants are indigenous, much less understand the special values of those species. Council and the Knox Environment Society promote community education about these matters, but it is likely that many indigenous understorey plants are removed unwittingly, regardless of any planning controls that may apply.

4.4.4 Dead Trees

Although recently dead trees are less likely to fall over or drop limbs than live trees, they may become dangerous over a decade or so and are often unsuitable in residential settings. This is unfortunate, because dead trees are essential to some native birds and mammals for nesting. They also provide the main (if not sole) sites for nesting, roosting or vantage points of many other birds and animals. The issues are discussed in *'Land for Wildlife Note No. 38'*, available from the Department of Natural Resources and Environment.

While dead trees are usually unacceptable on smaller residential allotments, it would be highly desirable to retain them on larger allotments and Council land as long as they present no risk to people or property.

4.5 Habitat Fragmentation

The 'Australian Terrestrial Biodiversity Assessment 2002' (National Land and Water Resources Audit 2002, p.vii) concluded that one of the most important threats to biodiversity in Australia is fragmentation of habitat in the highly modified regions of southern and eastern Australia.

This is relevant to Knox. The distribution across the municipality of Knox's biologically significant sites, as shown on the key map on p. 2 of Volume 2, illustrates the highly fragmented nature of most remnant vegetation in Knox, other than in the Lysterfield Hills and the foothills of the Dandenong Ranges. Some sites are linked, often tenuously, by habitat corridors along creeks, roads and railway lines. Others sites are isolated by urban or industrial development.

Comparative studies of birds over time suggest that some species are declining in Knox as links between sites break down. John Reid's observations since 1978 around Dandenong Creek in Wantirna and Heathmont suggest that some migratory and nomadic bird species have become less frequent in the last two decades. A number of species, including Pallid Cuckoo, Fan-tailed Cuckoo, Shining Bronze-Cuckoo, Golden Whistler, Rufous Whistler, and Olive-backed Oriole, appear to be declining in this area. A likely explanation is that sites which were formerly visited by these species on a regular seasonal basis are now too isolated from each other and from major habitat corridors.

This explanation is supported by Baker (1989) who describes a comparative study of bird species of Blackburn Lake (completely isolated from other bushland), and the Mullum Mullum bushland in Mitcham (connected to the Yarra River at Warrandyte by a corridor of vegetation along Mullum Mullum Creek). Baker states that both sites are of similar size and geographic location and considers both to offer similar habitat. Of the 100 or so indigenous bird species residing in or regularly visiting the Mullum Mullum bushland, 28 were absent or in significantly lower numbers at the ecologically isolated site of Blackburn Lake. It is perhaps significant that 23 of this total (82%) are migratory or nomadic birds which tend to move along corridors of native vegetation.

The reduced abundance of native birds that results from fragmentation causes an increase in pest insects that were previously kept in check.

Fragmentation of habitat also means that flora and fauna become especially vulnerable to drastic disturbance such as fire, drought and possible climate change, because there is no adjacent refuge from which to recolonise. This includes plants which colonise bare ground through windborne seed from unaffected areas, particularly the important early colonisers in the daisy family (which store very little seed in the soil).

Inbreeding is another problem of fragmented sites. Fauna need to be able to travel to find mates from other populations, and some plants need to be pollinated or have their seeds dispersed by insects or birds travelling between populations of the plants.

As sites become more fragmented, the ratio of boundary length to area increases. This exposes them to more edge effects such as weed invasion, unsupervised pets, nutrient-rich runoff from gardens, and waste dumping.

The full range of negative environmental impacts of habitat fragmentation is discussed in more detail in the review article by Saunders *et al.* (1991). These CSIRO scientists end their article with the conclusion that the ecological health of remnants of native vegetation is critically dependent on the broader landscape in which they occur, and it is no longer appropriate to treat remnants as independent from their modified surroundings. In the Knox context, this means (in part) that the measures which need to be taken to conserve flora, fauna and significant sites cannot be confined to the significant sites alone; there are measures such as planning control over tree removal that ought to be applied on land between sites of high biological significance. This has been taken into account in the recommendations below for amendments to the Knox Planning Scheme (Section 5).

4.6 Dieback

'Dieback' is a term used to describe the most obvious symptom exhibited by a tree in response to a wide range of stresses related to pests, disease or other environmental factors. In its broadest sense, the term is applied to any native or exotic species exhibiting twig and branch death starting at the branch tips and working down toward the trunk. A good discussion of the problem is given by Jones and Elliot (1986).

One serious cause of dieback is the extremely virulent soil-borne disease, Cinnamon Fungus (*Phytophthora cinnamomi*), which is widespread through southern Australia. It can kill more than 25% of the overstorey species and 50-75% of the understorey species. It spreads through moist soils and favours warm, moist conditions, spreading rapidly after heavy rains in summer. It is almost inactive at temperatures below 15° C.

Cinnamon Fungus is often spread on road making machinery moving from contaminated sites to new projects elsewhere, and also in contaminated fill and gravel used in road construction.

Earthmoving machinery and tractors can readily transmit fungi and diseases, as can introduction of contaminated soil or road gravel. Measures should be taken to minimise the risk to sites of biological significance.

Soil compaction and surface level changes within a tree's root zone are frequently a problem for trees close to newly constructed buildings or those under construction. The parking of vehicles or stockpiling of materials on a tree's root zone will compact the soil, reducing its oxygen exchange capacity and starving the roots of oxygen. Vehicles and heavy equipment should therefore not be placed under trees.

A complex problem contributing to tree dieback in some of Knox's biologically significant sites appears to involve the interaction of Bell Miners, Psyllid insects, loss of shrubby understorey vegetation, and in many cases an increase in soil nutrients. The ecology of the problem is discussed by Buchanan (1989).

Bell Miners are very aggressive birds that form communal territories and feed on Psyllid insects. Psyllids are tiny, sedentary, sap sucking insects which live on eucalypt leaves. They produce a protective cover, or 'lerp' under which they live for most of their lives. Bell Miners eat the lerps and sometimes the nymph of the Psyllid, but usually the insect is left, allowing them to increase in numbers.

The Bell Miner's aggressive behaviour keeps at bay most of the other birds that would normally consume psyllids, and thus the psyllid population is no longer limited by natural means (Low, 1994). As the Psyllid numbers increase, the foliage damage they cause becomes unsustainable and the host trees start to die back. As leaves are shed by afflicted trees, Psyllids start to decline in number, and under natural conditions the Bell

Miners would move on. However, Bell Miners cannot move to other areas if the bushland is fragmented (as is normal in Knox), which means that they persist and there is no recovery period for afflicted trees.

Dense shrubs normally provide protection from the Bell Miner for small birds, and these small birds are normally important in controlling the Psyllid population. The loss of shrubby understorey vegetation, generally through lack of periodic burning or from removal as a fire hazard, exacerbates this complex problem by reducing suitable habitat for small birds.

Increased soil nutrient levels from urban stormwater, garden runoff, pet faeces and other sources cause eucalypts to produce increased quantities of soft, sappy growth which provide an ideal food supply for leaf eating or sap sucking insects. This soft growth contains higher than normal amounts of nitrogen, an essential component for the production of amino acids. Insects such as Psyllids that live on this enriched diet grow and reproduce more rapidly, which in turn increases the level of insect damage to trees.

4.7 Fire Management

Fire hazard – real or perceived – puts pressure on some bushland reserves and properties for ecologically undesirable fire prevention works such as construction of firebreaks within bushland. This is a particular problem where buildings are placed too close to bushland. Council should be able to prevent further instances of this in cases where planning permits are required, because of provisions that have been included in the proposed overlay schedules discussed in Section 5.5. However, developments such as dual occupancies often do not require a planning permit, and then Council only has the power of persuasion to prevent undesirable encroachment of buildings on bushland.

As noted in Section 4.3, Council could respond to this problem by producing and distributing a brochure about being a good neighbour to bushland reserves. The brochure would encourage recognition of the values of the reserves and the need to avoid actions that cause incompatibilities between landowners and neighbouring bushland. It would also encourage actions by neighbours on their own properties to keep fire hazard acceptable.

Each year, Council issues roughly fifty fire prevention notices on owners of vacant properties at the foot of the Dandenong Ranges, requiring cutting of vegetation. Some of these properties have biologically significant vegetation. In the case of properties that lie within Sites 1-100 of this report, the measures taken should be decided with the sites' significance in mind, guided by the descriptions of the sites in Volume 2. The relevant sites could be identified with the aid of the key map at the start of Volume 2, or from Council's GIS once the sites are placed on it.

Care should be taken not to cut areas of fairly intact native vegetation too heavily, too often or at inappropriate times of the year, because it can encourage a transition from indigenous plants to faster-growing weeds which produce more flammable material that dries out more thoroughly in the fire danger period.

In the short term, cutting vegetation simply converts green, standing material to dry, fallen material, with little if any real improvement in fire risk. However, manual removal of the hay, leaf litter and sticks (e.g. with a rake) can greatly reduce the density of fine fuel and thereby reduce the fire hazard.

In the absence of manual removal of hay, leaf litter and sticks, the main benefit of slashing, mowing or brushcutting is suppression of growth in the following weeks. This is not very helpful if the cutting occurs too late in the season, when plant growth and rotting of hay are very slow anyway due to the summer drought. On the other hand, acting too early in the season can result in bogged vehicles that can cause weed invasion and ecological damage. Ideally, the timing of slashing or mowing should also take into account any serious weeds that may be stimulated, aiming to cut them shortly before their main annual seed-set. Late November or early December is an appropriate time of year for cutting native vegetation in most of Knox, except that an earlier cut is preferable if the serious weed, Sweet Vernal-grass (*Anthoxanthum odoratum*), is a problem and threatens to drop seed prior to the cut.

Controlled burning appears not to be used on private land in Knox for management of biodiversity or fire hazard. However fire is being increasingly used in Council's bushland reserves and Parks Victoria land in Knox to maintain biodiversity and minimise fire hazard.

Parks Victoria has achieved substantial gains in biodiversity from trial burns in Dandenong Valley Parklands, as demonstrated by Lorimer (2000b, 2001b).

Council's park management staff are progressively acquiring expertise in this area and have developed constructive relationships with local brigades who conduct the burns. Neighbours are notified prior to the burns. Some of the burns are being guided by a report by Lorimer (2001a), and the remainder is the result of discussions and site visits between Council's park managers and the Fire Prevention Officer.

4.8 Feral Animals

The following pests are having a detrimental impact on the native fauna and flora:

<u>Feral cats</u> pose a serious threat to native animals in Knox. Feral cats kill prey up to their own body size, and their diet in Victoria includes over 18 species of native birds, 24 mammal species, and 3 reptile species (Seebeck *et al.*, 1991). Frogs and numerous invertebrate animals also contribute to a feral cat's diet (Anon, 1991). Many feral cats carry and transmit infectious diseases such as toxoplasmosis and sarcosporidiosis, that can debilitate and kill native animals, livestock and humans (Anon, 1991).

<u>Foxes</u> are voracious predators that kill native birds and small native mammals, and are major spreaders of seeds of serious weeds such as Blackberry, Hawthorn and Cotoneasters. They also dig extensively at certain times of the year, sometimes causing damage to native ground flora and promoting germination of weeds. They are abundant in Knox, particularly along the creeks.

<u>Rabbits</u> cause moderate to substantial damage to native vegetation in the Lysterfield Hills (including Heany Park) and in the Dobsons Ck valley eastward from Wicks East Nature Reserve in The Basin. Knox City Council has run a rabbit control program since 2001 in four sites in the Lysterfield Hills, using carrots baited with Pindone. The program is in partnership with Parks Victoria and the two neighbouring quarry operators.

<u>Common (or Indian) Mynas, Noisy Miners, Spotted Doves, Starlings</u> exclude native fauna from nest sites. This is often observed in Knox.

<u>Blackbirds</u> disperse berry-bearing weeds such as Blackberries, Cotoneaster, Hawthorn and Sweet Pittosporum in their droppings. They are also aggressive toward some native birds, and their scratching destroys indigenous plant seedlings.

<u>Mallards</u> (a foreign species of duck) are capable of interbreeding with the native Black Duck. Mallards and their hybrid offspring were recorded on several occasions during this study. They are regarded as a mild threat to the native species.

<u>Feral Honeybees</u> inhabit tree hollows, thus reducing the available nest sites for native birds and possums. Honeybees also compete with native bees for nectar (Douglas 1977), and harvest nectar from some species without effecting pollination (Taylor and Whelan 1988).

<u>Slugs and snails</u> often cause considerable damage to orchids, which are the group of indigenous plants that have suffered the greatest level of local extinctions in Knox (Section 3.4).

<u>Rodents</u> (mice and introduced rats) are almost certainly present in most remnant vegetation in Knox. These animals compete with native rodents and small marsupials for ecological resources, and are very difficult to eradicate from indigenous vegetation. Controls on rubbish dumping will remove some of the attractants for these species. Revegetation will encourage native predators such as Kookaburras.

4.9 Pets

It is not clear whether pets such as cats and dogs may be having a severe impact on fauna in Knox through hunting, spreading disease, disturbing nests, harassing wildlife, and frightening wildlife from their habitat. Indigenous plants may be trampled or dug up by pets, and soil disturbance from scratching provides an ideal seed bed for weeds. Also, nutrients in cat and dog faeces contaminate soil and waterways.

Although many cat owners insist that their pet does not wander, studies have shown that domestic cats often travel as far or further than feral cats – up to 11 km in a night. This means that a cat at large anywhere in Knox is within hunting range of a site of biological significance. Even well-fed cats catch 25 creatures per year on average. Cats can also spread toxoplasmosis and other diseases that may be innocuous to cats but fatal to wildlife.

Cats are presently regulated under the *Domestic (Feral and Nuisance) Animals Act 1995* and under Knox's *General Provisions Local Law No.2*. The latter requires that all pets must be confined to the owner's property and not be allowed to stray or roam.

4.10 Nutrient Seepage

Most introduced grasses and typical garden plants thrive on elevated levels of phosphorus and nitrogen, so gardeners apply fertiliser to encourage them. By contrast, indigenous plants are adapted to Knox's low natural levels of soil nutrients, and some even exhibit a toxic response to elevated phosphorus levels. When fertiliser is applied to a garden on a slope above native vegetation, the nutrients migrate downhill, poison or debilitate some of the indigenous plants, and provide good conditions for weeds to take over.

The nutrients either build up in the soil and cause increasing damage, or else migrate downhill where they eventually pollute a creek (causing algal blooms, rampant weed growth or other ecological upsets).

These are common problems in Knox's bushland reserves and creeks.

Ideally, the source of the nutrients would be corrected, but it is very hard to achieve this because it would require residents to alter their gardening practices. It would be worth including this issue in a brochure about being a good neighbour to bushland reserves, as discussed above in the context of weeds, garden waste dumping and fire management.

An alternative to control at source that can be effective for a localised problem in bushland is to install a cut-off drain uphill from the affected native vegetation. The drain catches runoff water and seepage and typically diverts them to a stormwater drain or directly to a creek, which does nothing to improve water quality.

Wetlands are sometimes created along creeks specifically to trap nutrients. Plants such as rushes in the wetlands take up nitrogen and phosphorus in their foliage, which is then harvested and removed from the site periodically. A very large example of such a system is under development beside Dandenong Creek immediately downstream from Wellington Rd in Rowville.

4.11 Drainage Works and Waterway Modification

Stormwater and runoff from most of Knox drains to the major creeks via pipes. Heavy machinery has been used to install underground pipes in almost all valleys in Knox, destroying almost all remnant vegetation in their path. The natural course of the creeks has been mostly replaced by straighter, artificial channels, or sometimes roads. This process has continued to occur in 2004, with the conversion of part of Corhanwarrabul Ck and associated wetlands into a road (Sherwood Way, Lysterfield) with a pipe beneath it.

Ditches, dykes and more pipes have been installed on floodplains to drain former wetlands and reduce the incidence of flood.

After such radical alteration, the original vegetation of Knox's valley floors (Figure 2) has been decimated, as is clear from the work of Reid *et al.* (1997b). The aquatic habitat value of the streams has been mostly lost too, partly because of the modified creek beds, flows, surroundings and water quality, and partly because retarding basins, pipes and the Pillars Crossing weir on Dandenong Creek now prevent the migration required by some of the aquatic fauna.

The one consolation is that natural aquatic ecosystems are much easier to re-establish than terrestrial ecosystems, so that wetlands created artificially often develop a rich biodiversity of indigenous organisms with little or no human intervention. One of the best examples in the region is the wetland which arose from the

abandonment of the old horse pond a few tens of metres north of Dandenong Creek, just downstream of Dorset Rd in Bayswater North. The pond now teems with aquatic fauna, as well as several regionally rare aquatic plants. Water birds make liberal use of dams and artificial ponds throughout Knox. Artificial creation of wetlands is discussed by Romanowski (1993).

Several municipal councils (e.g. Monash) are reverting heavily modified creeks or drains back to meandering courses lined with vegetation.

4.12 Rare or threatened flora and fauna

This study found that 53% of native flora species are threatened with extinction from Knox within the next decade or two (Section 3.4.2, Appendix B). There is also a high proportion of fauna species in Knox that are threatened or near-threatened statewide (Section 3.5, Appendix D). However, the threats to these species can be overcome and it is reasonable to aim to retain all presently existing native fauna and flora species until at least the year 2020 (which is a strategic target date for Council).

The first step to conserve these species is to protect their habitat, which is principally within Sites 1-98 of Volume 2. Most sites contain at least one species that is threatened in Knox. Protection of habitat in these sites is a major thrust of the recommendations in this report.

The second step is to increase the numbers of the many plant species that are present in such small populations that they are vulnerable to inbreeding and chance events such as vandalism or digging by foxes. Breeding programs for this purpose could be coordinated by Knox City Council, particularly focusing on the more secure reserves and the more threatened species (particularly those that are critically endangered in Knox or threatened statewide). Sometimes pollen, seed or whole plants will need to be introduced from a nearby site in the same biogeographical zone (Section 3.2) so that outbreeding can occur.

It would also be desirable to monitor the populations of the most significant species. This is a task that could be taken up by members of the community reporting to Council. Prospective volunteers should contact an Environment Officer at Council's Sustainability Department.

4.13 Revegetation

Previous sections explain how native vegetation in Knox is dwindling and becoming increasingly fragmented and degraded. While it is in no way a substitute for retention of native vegetation, the losses are being ameliorated by replanting of some biologically degraded areas and to improve the functioning of habitat corridors.

In the past two decades there has been an increasing trend of using indigenous species for revegetation projects, as supported under the Federal Government's *National Strategy for the Conservation of Australia's Biological Diversity* (DEST, 1996). This should be continued and extended.

It is almost always strongly desirable to determine the native vegetation of a proposed planting site and select species appropriate for that type. (Exceptions occur where the environment is too greatly altered to again support its original type of vegetation). Propagation material should come from the same (or closely related) EVC and biogeographic zone in Knox (Section 3.2) or nearby. Lists of suitable species could be compiled for each EVC to simplify selection.

Various community groups in Knox hold regular working bees to remove weeds and plant indigenous species at selected sites. This is a valuable opportunity for community involvement and ownership of local projects and provides a useful, conscientious and skilled adjunct to Council's own park management staff. The relevant staff at Council support these groups in a number of ways, including staff participation, permission to work on sites and removal of weed waste and rubbish after working bees. Council and the Knox Environment Society cooperate on some projects, such as the Swordgrass Brown Butterfly Project.

As the *National Strategy for the Conservation of Australia's Biological Diversity* (DEST, 1996) says, 'Although all levels of government have clear responsibility, the cooperation of conservation groups, resource users, indigenous peoples, and the community in general is critical to the conservation of biological diversity'.

5. Conservation Measures in the Planning Scheme

5.1 State Planning Policy Framework

The State Planning Policy Framework (SPPF) is part of the Victoria Planning Provisions, and is therefore included within the Knox Planning Scheme. It requires Knox City Council to give effect to various aspects of State level planning policy when planning and administering the municipality. Clause 11.01 states,

'Planning, under the Planning and Environment Act 1987, is to encompass and integrate relevant environmental, social and economic factors. It is directed towards the interests of sustainable development for the benefit of present and future generations, on the basis of relevant policy and legislation.'

New information from this study relates directly to some of the relevant policies, as explained in the following subsections. These policies relate to the part of Clause 11.03-2 of the SPPF that says planning should:

'Help to protect the health of ecological systems and the biodiversity they support (including ecosystems, habitats, species and genetic diversity)'.

In Knox, this applies most importantly to vegetation communities, since much of the municipality's native vegetation belongs to Ecological Vegetation Classes that are listed as Endangered or Vulnerable.

5.1.1 Conservation of Native Flora and Fauna

Clause 15.09-2 is the part of the SPPF that is most directly relevant to this report, and which provides the strongest mandate to Council for implementing the planning measures recommended here.

Perhaps the most important part of that clause is the paragraph about the State government's Native Vegetation Framework (an incorporated document in the Planning Scheme):

'Planning and responsible authorities should have regard to Victoria's Native Vegetation Management – A Framework for Action (Department of Natural Resources and Environment 2002). If native vegetation is proposed to be removed as part of a land use or development proposal, planning and responsible authorities should achieve a Net Gain outcome, as defined in the Framework. This is achieved firstly, as a priority, by avoiding adverse impacts, particularly native vegetation clearance; secondly, if impacts cannot be avoided, by minimising impacts through appropriate consideration in planning processes and expert input into project design or management; and thirdly, by identifying appropriate offset actions. The criteria for determining the appropriate response and offsets are contained within the Framework.'

The Framework and the technical documents that it cites provide an approach for achieving the objectives stated above. This includes consideration of:

- The rarity of, or threats faced by, each Ecological Vegetation Class;
- The degree to which native vegetation has become ecologically degraded, as measured by a 'habitat score';
- The importance of conserving particularly large, old trees;
- The role that native vegetation plays in protecting against degradation of land and waterways;
- The importance of conserving habitat for species of flora or fauna that are rare or threatened regionally or more widely.

These considerations have all been taken into account in the present study.

The Framework is quite prescriptive in its guidance on how to respond to permit applications that involve removal or consequent loss of native vegetation. As explained in Section 5.6.4, there are few opportunities for approving permit applications of this kind, because of the predominance of threatened vegetation types in Knox. In cases where a permit is issued, the Framework is again quite prescriptive about requirements for 'offsets' that compensate for the loss of native vegetation.

The Framework is intended to be supported by regional vegetation plans, but the one relevant to Knox – the Port Phillip and Westernport Native Vegetation Plan – has not been published at the time this report is being written. When it is, Clause 15.09-2 requires that Council have regard to it when preparing planning scheme amendments or municipal strategic statements affecting native vegetation, flora, fauna, waterways or wetlands.

The Framework is also intended to be supported by a document of 'Operational Guidelines' that will assist Council in some cases to assess permit applications involving loss of native vegetation. This document is yet to be released at the time this report is being written.

Clause 15.09-2 of the SPPF also requires that Council, as a planning authority and responsible authority, should:

• 'Consider the potential impacts of land use and development on the spread of plant and animal pests from areas of known infestation into natural ecosystems';

and that responsible authorities should:

• 'Ensure that the siting of new buildings and works minimises the removal or fragmentation of native vegetation'.

However, the SPPF's objectives for Net Gain, weeds and proper siting of buildings and works cannot be implemented in the case of a land use or development that does not need a planning permit, and such a permit is typically not required unless the affected land is specifically recognised in the planning scheme.

This brings us to what we might call 'the three pillars' that are required for protecting biodiversity through the planning scheme:

- ① <u>Information base</u>: There must be reliable information about the species, sites and biological communities in the municipality, along with the threats to them and positive measures to bring about improvements. The report you are reading provides a fairly high level of such information that is current at the time of writing, and additional information will be required to take into account the specifics of many permit applications.
- ② <u>Planning provisions</u>: Overlays and possibly Local Policies in the Planning Scheme need to be amended to provide control over various types of development in and around sites of biological significance, and there need to be associated amendments to the Municipal Strategic Statement. These are explained in detail in Sections 5.2 to 5.5.
- 3 <u>Administrative measures</u>: The controls that are provided by the above planning provisions need to be accompanied by measures for assessing and deciding planning permit applications, making the provisions understood by the affected community, and encouraging compliance. These measures are discussed in Section 5.6.

5.1.2 Protection of Waterways and Floodplains

Stream corridors and floodplains feature prominently in the sites of biological significance identified in Volume 2 of this report.

Clause 15.01-2 of the SPPF says that Council, in its roles as planning authority and responsible authority:

'where possible should encourage:

- 'The retention of natural drainage corridors with vegetated buffer zones at least 30m wide along waterways to maintain the natural drainage function, stream habitat and wildlife corridors and landscape values, to minimise erosion of stream banks and verges and to reduce polluted surface runoff from adjacent land uses.
- *'Measures to minimise the quantity and retard the flow of stormwater runoff from developed areas.*
- *'Measures, including the preservation of floodplain or other land for wetlands and retention basins, to filter sediment and wastes from stormwater prior to its discharge into waterways'.*

These objectives overlap to some degree with those in Section 5.1.1 and the same 'three pillars' apply. However, they go further in that they apply to water quality and aquatic environments that may have no significant vegetation. Water quality, flooding and flow regimes are environmentally important for fauna such as Platypus, fish and aquatic invertebrates. Developments and land uses that affect water can also have impacts on flora and fauna well downstream.

The planning provisions recommended in Sections 5.2 to 5.5 below therefore apply in some cases to land that may have little or no native vegetation or other features of biological significance on the site, but which may be subject to development proposals or land use changes with downstream effects on water quality or hydrology.

5.2 Municipal Strategic Statement

Clause 21.02 of the Knox Municipal Strategic Statement (or MSS) includes a list of 'factors of regional significance which impact on Knox', including the Dandenong Ranges and other parts of Knox that correspond approximately with sites of biological significance identified in Volume 2 of this report.

It is recommended that the next review of the MSS should expand this list to include recognition of the predominance of regionally threatened vegetation types among the remaining native vegetation in the municipality, and the consequently high number of sites of State significance.

The same clause also includes a list of state-based policies that impact on development in Knox. It does not acknowledge the Native Vegetation Framework, nor the Port Phillip and Westernport Native Vegetation Plan. The latter was not published when the MSS was prepared, but any future review of the MSS should take it into account, as required by Clause 15.09-2 of the SPPF.

It is recommended that the Native Vegetation Framework and the Port Phillip and Westernport Native Vegetation Plan be addressed in the MSS when it is revised.

Section 21.03 of the MSS is headed 'Key Influences, Opportunities and Challenges', and subsection 5 deals with environmental sustainability and conservation. There are only eight lines concerning native flora and fauna, which do not encompass many matters of environmental significance identified in this report, nor any of the threats to them, nor the opportunities for improvements. Clause 21.08-1 provides slightly more background about what is significant, but still not about threats or opportunities. Without recognising threats such as vegetation removal, subdivision and changed hydrology, the MSS is not providing the support it should for policies and overlays that are supposed to control those threats.

It is recommended that the next review of the MSS should include much more detailed reference to such matters, based on information in this report.

Section 21.03-3 of the Nillumbik MSS of 2002 may provide a model for this. The predominance of threatened vegetation types should again be stated, and perhaps a statement of commitment to the State policy of achieving a Net Gain in native vegetation and habitat.

Clause 21.03-4 of the MSS provides 'Key elements of the strategic framework plan', which includes:

- 'Identification of the major open space areas in the municipality which are important for their recreational, landscape and environmental values;
- 'Identification of areas where use and development must respond to and address environmental and landscape issues'.

The present report is intended to respond directly to these objectives, with recommendations below for formal recognition of environmentally important areas, principally through the use of overlays (Section 5.5).

Clause 21.05 of the MSS makes the 'green, leafy image' of Knox the centrepoint of objectives to promote the identity and image of Knox. This is entirely complementary to the measures recommended here to conserve and promote the tree cover, sites of biological significance and native vegetation in general. However,

the references to Vegetation Protection Overlays in Clause 21.05 of the MSS should be altered in accordance with overlay recommendations in this report (Section 5.5 and Volume 2) to the extent that the recommendations are adopted by Council, and this report should be referenced. The same applies in Clause 21.08.

Clause 21.08-2 of the MSS states that environmental features are to be protected by policies that include:

'Encouraging the retention of remnant native vegetation for its habitat and other ecological values, particularly where the vegetation is located:

- 'Along creek valleys.
- 'Along linear reserves.
- 'In the vicinity of the Dandenong Ranges National Park.
- 'In the vicinity of other parks and reserves'.

It is recommended that a future revision to the MSS should expand this list to include recognised sites of biological significance.

The same clause includes a policy of requesting information about environmental impacts of proposals that may affect parks, waterways or non-urban areas. This policy provides some support for the measures recommended in this report, but it would benefit from an accompanying policy like the following (which parallels one that is already listed for Heritage Overlay sites):

• Ensuring that planning applications on land adjoining sites identified in Schedule 1 to the Environment Significance Overlay acknowledge the importance of the identified site and any potential for incompatibility of land use, including fire hazard and environmental matters.

It is recommended that the policies listed in Clause 21.08 be augmented by the one above.

5.3 Local Planning Policies

5.3.1 Dandenong Foothills Policy

Clause 22.01 of the Local Planning Policies is the Dandenong Foothills Policy, which is under review. The existing policy in the Planning Scheme covers an area that embraces, and is nearly twice the size of, the area recommended here to be covered by an Environmental Significance Overlay (ESO2 – Section 5.5.2). It also embraces over one dozen smaller sites of biological significance identified in Volume 2 that are recommended for another schedule to the Environmental Significance Overlay (ESO1 – Section 5.5.1) that provides greater planning control.

The Dandenong Foothills Policy recognises that there is environmental significance to at least some of the area that it covers, along with landscape values and a residential character that is sympathetic to the natural surrounds.

The decision guidelines that are listed for assessing permit applications in this area include:

- 'The environmental significance of the site' and
- 'Management plans of adjoining parklands'.

These provisions are complementary to the recommendations below for ESO1 and ESO2.

5.3.2 Bushland Neighbours Policy

Residential buildings that encroach too close to bushland (including sites of biological significance) sometimes create problems of incompatible land use. The most common and important incompatibility that arises is buildings constructed so close to bushland as to be at risk from bushfire. This typically leads to damage to the bushland from fire prevention works that have to be conducted.

Ideally, such incompatibilities would be avoided by having a protective buffer around bushland areas. New subdivisions that contain or adjoin bushland should always allow for such buffering. However, there are some bushland remnants among Knox's sites of biological significance where no buffer exists and neighbours can presently develop land without regard to either fire risk or the pressures that the development may impose on the bushland.

One way of dealing with such problems would be to impose an overlay on certain properties adjoining sites of biological significance. This could be either the same overlay as the site itself (an Environmental Significance Overlay, or ESO) or a separate Design and Development Overlay (DDO). The overlay could require that developments respond to the issue of fire risk. These overlays have the advantage that they can require a permit for construction of a building, and hence trigger planning controls that would not otherwise apply. A disadvantage may be that these overlays are not usually used for such purposes, and some people might see it as undesirable to do so. However, such a use of the ESO or DDO would be quite consistent with the overlays' formally stated purposes in the Victoria Planning Provisions, and it would fulfil purposes that have a sound basis in the Planning Scheme.

In principle, another approach would be to impose boundary setbacks for buildings on properties adjoining sites of biological significance. The Planning Scheme can impose setbacks in schedules to zones such as R1Z, and Clause 4.14(1) of the *Building Regulations 1994* provides a mechanism that could effectively insert the Planning Scheme's setbacks into the building permit process. However, these provisions are not intended to be applied selectively on certain properties, which is what is required for properties adjoining sites of biological significance.

The remaining approach is through a new Local Policy. This has the disadvantage that application of a Local Policy is not triggered by many building projects because they do not require a planning permit. Nevertheless, it may be the only way of dealing with the problem.

An example of how such a policy might be worded is given in Appendix E. It includes a list of the sites of biological significance that are subject to this issue.

If an ESO schedule is found to be a preferable alternative, the planning provisions and list of sites in Appendix E can be fairly readily translated into an ESO schedule. However, more effort would be required to determine exactly which properties would be covered by the overlay schedule.

The Victoria Planning Provisions will be reviewed in the short to medium term to consider amendments that would give better effect to the Native Vegetation Framework, as foreshadowed on p.35 of the Framework document. This may offer an opportunity for a more effective measure to deal with the sorts of incompatibility discussed above. Council should consider this at the time of the review.

5.4 Zones

The Biodiversity Practice Note for the Victoria Planning Provisions (dated March 2002) states that for sites of biological significance that are publicly owned, 'the Public Conservation and Resource Zone is the most appropriate zone for protecting biodiversity values, however, depending on the predominant land-use activity, other public land zones may also be appropriate coupled with an overlay'. In Knox, the Public Conservation and Resource Zone applies only to a rather narrow strip along parts of Dandenong Creek. The other publicly owned sites of biological significance have various zonings because they are mostly in urban surroundings and have primary uses other than just conservation.

The Biodiversity Practice Note says, 'In predominantly urban environments, zoning is not the best way to achieve biodiversity objectives for isolated locations with biodiversity values, such as waterways, open space areas or recreational uses such as golf courses. It is preferable to use a zone appropriate for the preferred strategic use of the land and to protect biodiversity assets by using an overlay'. This situation applies to most of the sites of biological significance in Knox, and zoning amendments are not recommended here as a tool for protecting any sites of biological significance in Knox.

5.5 Overlays

Effective protection of most sites of biological significance requires the use of planning overlays and their associated schedules. The appropriate overlay and schedule for a particular site depends on:

- Its level of significance;
- The sensitivity of the significant attributes to different threats (e.g. subdivision or building construction);
- The type of land use and tenure; and
- Whether the significance is associated with native vegetation, other vegetation, lakes, streams etc.

Based on these characteristics, and guided by the Biodiversity Practice Note for the Victoria Planning Provisions, the sites investigated in this study have been divided into four categories with different overlay treatments, as follows:

- Ninety-seven sites are proposed to be covered by an Environmental Significance Overlay with a schedule that provides a fairly high level of planning control. This would affect 1,640 ha, or 14% of Knox;
- A second, less restrictive schedule to the Environmental Significance Overlay is proposed to cover the treed residential area at the foot of the Dandenong Ranges, between The Basin and Upper Ferntree Gully. This would affect 1,010 ha, or 9% of Knox;
- Fifteen sites (354 ha, or 3% of Knox) are proposed to be covered by a Vegetation Protection Overlay (which is less restrictive again); and
- Five sites (or groups of sites) of lower significance are not recommended to come under any overlay because Clause 52.17 of the Planning Scheme (the baseline 'Native Vegetation Retention' provisions) is believed to provide a basic but appropriate level of planning control.

The overlays proposed here would completely replace the existing Schedules 1 and 3 of the Vegetation Protection Overlay in the planning scheme. This would not significantly change the total area covered by overlays, but there are substantial numbers of properties proposed to be relieved from overlays and others that are proposed to be covered for the first time.

The proposed overlays and schedules are discussed in the following subsections.

5.5.1 Environmental Significance Overlay – Schedule 1

Sites 1-97 described in Volume 2 are the ones with greatest biological significance, and are recommended for the highest level of recognition in the Knox Planning Scheme, by way of a schedule to the Environmental Significance Overlay (ESO). No ESO has been applied previously in Knox.

This schedule is referred to as 'ESO1' here. It is intended to provide an appropriately high level of planning protection for the

- streams,
- water bodies,
- floodplains and
- native vegetation

that give rise to the significance of the sites. The native vegetation is often significant in itself, and any of the above features may be significant because of:

- The fauna that rely on them;
- Their role in ecological corridors or networks for movement of fauna, pollen or plant propagules; or
- Their importance in maintaining aquatic systems that are important to humans.

Proposed wording for the ESO1 schedule is provided in Appendix F. It includes a Statement of Environmental Significance that summarises the range of reasons given in Volume 2 why the various sites are environmentally significant.

On floodplains, open pastoral landscapes with little native vegetation can form important habitat for certain birds or other wildlife (e.g. birds of prey and the rare fish, Dwarf Galaxias). ESO1 provides control over subdivision, works or buildings that may be proposed for these sites to protect against adverse changes in water flows, hydrology, silting, weed growth or loss of important vegetation.

Note that no overlay other than the ESO can provide this sort of protection when significant vegetation is not proposed to be removed. The ESO also provides controls over subdivision, unlike the Vegetation Protection Overlay or similar overlays. Even where none of these considerations are important, the ESO is appropriate for riparian sites and any site of known or likely biological significance, according to the Biodiversity Practice Note for the Victoria Planning Provisions (dated March 2002).

The hundred sites recommended for ESO1 vary from Local to State significance for their flora, fauna or habitat values. These levels of significance are determined according to the Department of Sustainability & Environment's published 'BioSites' criteria (NRE 2002b), updated where necessary to take into account changes in the criteria that the department now uses internally and plans to release publicly in 2004.

5.5.2 Environmental Significance Overlay – Schedule 2

A second schedule to the Environmental Significance Overlay (called 'ESO2' in this report) is proposed for the leafy, mostly residential areas at the foot of the Dandenong Ranges in The Basin, Boronia, Ferntree Gully and Upper Ferntree Gully. ESO2 is intended to protect vegetation that underpins the existing natural values of the area and provides a buffer to the Dandenong Ranges National Park and other sites of biological significance embedded within the ESO2 area.

Proposed wording for the ESO2 schedule is provided in Appendix G. It includes a Statement of Environmental Significance that summarises the reasons given in Volume 2 for recognising the site under the Environmental Significance Overlay.

The objectives, permit requirements and decision guidelines of ESO2 are narrower than ESO1 and the controls are a little weaker, commensurate with the nature of the land use and the lower significance level of the vegetation proposed for ESO2.

The Environmental Significance Overlay is proposed because of the need to control building, works and subdivision as well as removal of native vegetation, and to a lesser extent because of the predominance of threatened ecological vegetation classes that are highly fragmented and occur on private land. This is consistent with the Biodiversity Practice Note cited above.

5.5.3 Vegetation Protection Overlay

The existing Vegetation Protection Overlay (VPO) schedule and maps in the Knox Planning Scheme are proposed to be wholly replaced. The new VPO is proposed here to cover fifteen sites, of which most comprise leafy residential areas or school grounds. The density and types of trees in these sites:

- Fulfil basic habitat needs for some native fauna, such as parrots;
- Display rudiments of pre-European vegetation communities that are now all regionally or nationally threatened; and
- In some cases, are likely to act as ecological corridors or 'stepping stones' for movement of native fauna around Knox.

The presence of the vegetation and the associated wildlife (particularly birds) adds to the amenity and character of the areas.

These sites have some biological significance, but in the sense of the Biodiversity Practice Note they would not be regarded as 'sites of biological significance', but closer to the description 'scattered living food trees with an exotic understorey ...'. The Practice Note states that the Vegetation Protection Overlay is the appropriate planning control applicable in such cases.

Proposed wording for the VPO schedule is provided in Appendix H. It only protects trees (indigenous or otherwise) whose trunk girths exceed one metre, and only when a range of exemptions do not apply. Parcels of land larger than 0.4 ha are also subject to Clause 52.17, which protects the full range of native vegetation (excluding Bracken), whether or not the VPO applies.

5.6 Administration of the Planning Scheme

5.6.1 Public Promotion

The first step for achieving effective implementation of planning provisions of the kinds discussed above is to make the Knox community aware of the provisions, understand them and respect them. Council has a good record of doing so with similar existing provisions. For example, there is a clear, informative brochure titled *'Your guide to understanding vegetation controls in Knox'*.

It is recommended that a new brochure replace the existing one, to explain the new provisions that Council adopts and the reasons for them (e.g. the predominance of threatened vegetation types and the Net Gain policy).

A separate brochure could be prepared specifically for owners of private properties covered by ESO1, highlighting the importance of their land and perhaps offering advice or practical assistance for looking after their sites and obtaining financial rewards for doing so. This could be based on Cardinia Shire's eight-page A4 brochure from 1996 titled '*Do You Live in a Site of Significance in Cardinia Shire*?', or the 1993 brochure from the Upper Yarra Valley & Dandenong Ranges Authority on which the Cardinia brochure was based. Such a brochure could also be given to prospective purchasers of sites of biological significance (or the purchasers' conveyancers) to explain what it means to live in such a site.

In addition to the grants and tax incentives offered by government for conserving biodiversity on private land, Council could consider introducing a scheme like Maroondah City Council's 'Biodiversity Rating Concession Program'. At present, twenty-five qualifying landowners in Maroondah receive financial rewards and practical assistance for managing and protecting their habitat.

Maroondah City Council has also produced A4 colour brochures titled '*Protecting Remnant Roadside* Vegetation' and 'Living Next to Bushland – A Guide to Reducing Edge Effect on Remnant Vegetation' that would be good models for Knox. Such brochures could be sent to landowners adjoining appropriate sites of biological significance to explain the effects that neighbours can have on bushland, and encourage good neighbourly behaviour and respect.

5.6.2 Provision of Information to Permit Applicants

The Council already provides prospective permit applicants with printed information about preparing an application that involves vegetation removal. This information will need to be updated to reflect any amendments to the planning scheme that result from the recommendations in this report.

In addition, it would simplify the process of preparing applications if Council made available, through its internet site, a spreadsheet of indigenous plant species in Knox – essentially an electronic form of the table in Appendix B. At the top of the list should be the species listed as Critically Endangered, Endangered or Vulnerable, since these species require special attention under the proposed schedules to the Environmental Significance Overlay. Consultants and others with databases of flora would be able to readily incorporate the conservation status ratings from the spreadsheet into their databases.

5.6.3 Referral and Expert Environmental Opinion

Statutory planners will need specialist support when considering permit applications relating to the planning provisions discussed above.

Council's Environment Officers have considerable familiarity with many of the sites and the associated issues, and they should be consulted regarding applications and decisions involving any of the sites of biological significance identified in this study. They will need some briefing or training about the changed planning provisions and what the provisions should achieve.

The Municipal Fire Prevention Officer may also need to be consulted regarding applications or decisions that could result in unacceptable fire risk or additional pressure on bushland for ecologically harmful fire prevention work. Permit applications should respond to fire risk in cases where this is relevant, as specified in the proposed overlays and local policy in the Appendices. A Municipal Fire Prevention Officer and an Environment Officer can often combine their areas of expertise to find the best ways to meet the dual objectives of fire safety and nature conservation.

The proposed ESO1 in Appendix F specifies that permit applications should be referred to the Department of Sustainability & Environment under certain conditions. The department can provide a high level of assistance with the Native Vegetation Framework, the Net Gain policy, review of reports by environmental consultants, and issues concerning threatened flora and fauna. A suggestion of the type of conditions under which referral should occur is given in Appendix F, but these conditions would have to be the subject of formal discussions between Council and the department prior to exhibiting the proposed amendment.

The stream management authority (currently Melbourne Water) should be consulted about permit applications or decisions that may affect stream stability, stream flows, water quality or water temperature (e.g. by altering the degree of shade from adjacent vegetation).

Council will probably have to call on ecological consultants sometimes in cases where matters of high biological significance might be at substantial risk from a proposal.

5.6.4 Deciding Planning Permit Applications

The inclusion of a property within one of the sites of biological significance in Volume 2 should be taken as an indication that there are environmental values that may be adversely affected by some types of vegetation removal or development proposals. The text and aerial photography of the affected site in Volume 2 should assist assessment of an application, but will often not provide information that is focused narrowly enough for a specific application; For example, Volume 2 does not provide information about every large old tree that may be affected by a permit application. In such cases, Council will have to rely on information provided with the permit application.

Interpreting Significance

It is important that each permit application be assessed on its merits without placing undue weight on the site's significance rating or documented significant attributes that may not be relevant to the application. The site's significance rating – State, Regional or Local – is based on the most significant attribute of the site (Section 2.6), which may not be relevant to a particular development proposal. Similarly, a rare species that occurs in one part of the site may not be affected at all by what happens on another part of the site. To illustrate the important consequences, a particular major development on a site of State significance may have less impact than a much smaller development on a site of Regional or Local significance, depending on the exact siting and other details of the developments.

In most cases, the significance rating of the site as a whole will be less important than the conservation significance of the particular part(s) of the site that are affected by the permit application. As explained in Section 2.6, conservation significance of native vegetation is rated according to the Native Vegetation Framework on a scale of 'Low', 'Medium', 'High' and 'Very High', and usually varies substantially from one part of a site to another depending on ecological condition, the rarity of the vegetation type and similar factors. Thus, the vegetation in an area affected by a hypothetical development may have a conservation significance (according to the Framework) that is 'Low' or even absent, even though the site as a whole may have State significance. In this example, it is the 'Low' conservation significance of the affected vegetation that matters, not so much the State significance of the site as a whole.

Long-term and Off-site Impacts

It is important that proposed vegetation removal, land uses and developments be assessed for their potential impacts off-site (particularly downhill or downstream) and over the long-term. For example, a subdivision may not involve clearing of native vegetation prior to any building construction, but the longer-term effects of residential development may result in substantial loss of significant vegetation. The effects might be worsened by off-site impacts if, for example, the lost vegetation has been a wildlife corridor between other sites. The overlay schedules in the Appendices have been drafted to take these matters into account.

Applying the Native Vegetation Framework

If native vegetation is proposed to be removed or is reasonably expected to be lost over time as a consequence of a proposed development or land use, the Framework is fairly prescriptive in its guidance to Council as a responsible authority deciding a permit application. Removal or consequential loss of vegetation of 'Very High' conservation significance should not be permitted by Council without ministerial-level approval based on matters of statewide significance, according to Appendix 4 of the Framework. Removal or consequential loss of vegetation of 'High' or 'Medium' conservation significance should only be permitted in quite restricted circumstances. Most native vegetation in Knox falls into the categories of 'Medium' to 'Very High' because of the predominance of threatened vegetation types. Consequently, the opportunities for issuing permits that involve removal or consequential loss of native vegetation in Knox are quite limited.

Conservation significance cannot be determined without calculating a 'habitat score' (Section 2.4.4). Determinations of habitat score can theoretically be done by people without much botanical or ecological training, but experience so far indicates that there is often substantial variation in the habitat scores determined by different people. It is therefore important that habitat scores and conservation significance ratings presented in support of planning applications should be done by properly qualified and trusted individuals.

The Framework and the imminent Port Phillip and Westernport Native Vegetation Plan should be consulted for minimum 'offset' requirements to compensate for any loss of native vegetation that is permitted, based on the Net Gain policy. In many cases, it will be very difficult or impossible to meet the offset requirements on a residential allotment. The Department of Sustainability & Environment has plans to allow offsets to be traded in a market similar to carbon credits for greenhouse gas accounting, but this will take quite some time to establish.

There may therefore be serious problems for some permit applicants to meet the offset standards, at least in the short term.

Long-term Security of Offsets

Offsets would be of limited value if their effects only last for a few years, and Council should satisfy itself that any offsets that it accepts will be of lasting benefit. A ten-year time span is suggested as an appropriate horizon for assessing the success of offsets, as specified in the proposed overlay schedules in the Appendices. Such a time span typically includes one or more changes of ownership of a property, so permit conditions involving offsets need to have effect, and be enforceable, over multiple ownerships.

The Department of Sustainability & Environment has been proposing Section 173 agreements as one mechanism for achieving the necessary durability of offset conditions. However, there has been opposition to this from the rural community and an alternative mechanism may be proposed in future. Council will have to consult the department about the favoured mechanism from time to time until this issue is finalised.

Bonds

Damage to significant habitat often happens during the process of developing sites, as discussed in Section 4.4.1. Council should consider the use of bonds in circumstances where a planning permit is issued for works that may adversely affect recognised sites of biological significance. This includes developments on adjacent land that have the potential to affect the significant site.

Permit Tracking

The Department of Sustainability & Environment is establishing a database to keep track of permits and offsets for loss of native vegetation. Council should be contributing to this. It will allow monitoring of progress toward the Net Gain objective and help identify problems in implementation of the Framework. This may be very important for making the Framework successful in the long term or modifying it as required.

5.6.5 Future Review of Significant Sites

Sites of biological significance can either lose or gain significance through changes at individual sites, e.g. through vandalism or habitat restoration. A site can also become more significant even if the site itself does not change, due to widespread loss of similar habitat elsewhere. There may also be sites that will be recognised in future as sites of significance but which have so far been overlooked, although such sites would be rare and probably at the lower end of the significance scale.

It is therefore important to anticipate the need to review the sites covered by overlays in the Planning Scheme. This may occur in response to a case put to Council by someone concerning a specific site, or it may occur as part of normal review of the Planning Scheme to keep it up to date.

Other municipalities with overlays in their planning schemes to protect sites of significance do not seem to have established a protocol for reviewing the status of a site in response to a request by the landowner or a third party. In some cases it may be appropriate for Council to require the person seeking the review to produce expert scientific evidence and other arguments as to why an amendment is sought and justified. In rare cases, it may be appropriate for Council to investigating the scientific evidence.

Changing the sites covered by an overlay in the Planning Scheme has to be done as a Planning Amendment, which imposes various requirements on the process. After being approached to make an amendment, Council is free to either reject the approach or go ahead and exhibit an Amendment.

The amendment would have to be advertised. Submissions should be accepted over a period of at least two months, and preferably until the following December to allow detection of flora and fauna that are hard to detect except in spring. Council would then consider the amendment in the light of the submissions received. When evidence of important biological considerations has appeared during the exhibition period, Council should receive a biologist's advice on the importance and reliability of the evidence. Council can then approve the amendment, have it referred to a planning panel or abandon it. There is no time limit to make a decision.

6. List of Recommendations

The following are the author's recommendations arising from this study. Recommendations are grouped and individually numbered for reference. Each one is given a suggested level of importance (high, medium, low) and urgency (short, medium and long time frames, corresponding to weeks, months and a year or more).

Administration

- 1. Council should consider each of the following recommendations with a view to their adoption. (High importance, short time frame)
- 2. Council should set target dates for the adopted recommendations and arrange allocation of resources for their implementation. (High importance, medium time frame)
- 3. Council should nominate an officer or committee of Council to oversee implementation and report to Council periodically. (High importance, medium time frame)

Recognition of sites of biological significance in the Town Planning process

- 4. Council should consider all the recommendations in Chapter 5, including preparation of an amendment to the Knox Planning Scheme that would introduce new overlays to protect sites of biological significance identified as Sites 1-113 in Volume 2. (High importance, short to medium time frame)
- 5. When subdivision applications arise within recognised Sites of Biological Significance, Council should negotiate to reserve as much as possible of the biologically significant land as Public Open Space, with highest priority on the most significant parts. Exceptions will be where the potentially reserved land would be too small or not ecologically viable. (High importance, short to long time frame)

Other measures to be applied to Sites of Biological Significance

- 6. Council should develop a schedule for the preparation or updating of management plans for its bushland reserves, taking into account the discussion in Section 4.1.1. (Low importance, medium time frame)
- 7. Council should keep a file of information on each of its bushland reserves. The file should include, among other things, cross-references to drawings elsewhere in Council, records of all management activities, and the species and provenance (the ancestral place of origin in the wild) of all plantings at the reserve. (Medium importance, medium time frame, cheap to implement).

Financial instruments to support biodiversity

8. Council should investigate financial or other incentive programs to residents or ratepayers whose longterm activities and commitments significantly assist Council's goals of conserving flora and fauna. The scheme in place at Maroondah City Council should be investigated as a possible model. (Low importance, medium to long time frame)

Other native vegetation protection measures

9. Council works involving damage or clearing of native vegetation should comply with the offset targets set in Victoria's Native Vegetation Framework (NRE 2002a). A procedure for reinstatement and mitigation works should be agreed before the works are approved. (High importance, short time frame)

Effective enforcement and penalties for illegal clearing

10. Any removal, destruction or lopping of native vegetation conducted under permit should be inspected by a Council officer during or as soon as possible after the action. (Medium importance, medium time frame)

11. Where the controls on vegetation removal etc. are being violated, Council should immediately consider options under the Planning & Environment Act (e.g. an Enforcement Order). No retrospective permits should be issued. (High importance, medium time frame)

Dead trees

- 12. Council should only remove large, dead trees from public land when it is declared unsafe by someone with appropriate qualifications. Dead trees are important habitat for many birds and mammals (particularly bats). Fallen logs can also be valuable habitat and their removal should be considered in that light. (Low to medium importance, medium time frame)
- 13. Council should encourage retention of dead trees on private land within, or near, sites of biological significance. This could include the offer of inspection by a properly qualified person to assess safety and habitat value (if approved by Council's insurer). (Low importance, medium to long time frame)

Ecological burning

- 14. Council should continue to conduct ecological burns on its own Sites of Biological Significance in conformity with management plans (or as practicable where a management plan does not exist). (Medium to high importance, long time frame)
- 15. Council should issue a permit for an ecological burn on private land where the applicant has the approval of the local fire brigade and the Department of Sustainability & Environment. The Department and brigades would need to be informed that Council is taking this step. (Medium importance, long time frame)

Weeds

- 16. Council should update the weed list that is accessible from its website, based on the information in Table 7 and Appendix C. (Medium importance, little effort required, short time frame)
- 17. Council and the Department of Sustainability & Environment should jointly consider a publicity campaign and weed control works targeted at the nine environmental weeds in Table 7, as discussed in Section 4.3. (Medium importance, medium to long time frame)
- 18. Council should discourage plant nurseries from selling Environmental weeds rated 'Serious' or 'Very Serious' in Appendix C. (Medium importance, long time frame)

Tree dieback

- 19. Revegetation projects should aim to restore a shrubby understorey, especially where the Bell Miner birds and Psyllid insects are dominant. (Medium importance, long time frame)
- 20. Whenever Council approves a permit application involving machinery operating in a site of biological significance with damp soil, the applicant should be provided with a copy of the brochure '*Phytophthora Root Rot... the plant killer*' (available from the author) and asked to follow its recommendations. (Low to medium importance, short to medium time frame)

Roadsides

- 21. When Council approves works on roads or roadside services within or adjacent to native vegetation, the approving officer should define the boundaries of roadworks and areas for storage and parking, and specify temporary fences as appropriate. The approving officer should either be competent in recognising biodiversity issues, or take advice from someone who is. Storage areas should not be under trees, to prevent soil compaction and consequent tree death. (High importance, medium time frame)
- 22. In such cases, machinery should be operated from the road surface whenever possible, not from the nature strip. (Medium importance, medium time frame)

- The size of the machines used should be determined by the requirements of the work. Excessively large machines lack manoeuvrability and their use increases the likelihood of vegetation damage. (Medium importance, medium to long time frame)
- 24. Where services or drainage pipes are to be installed in sensitive areas, Council should encourage boring under trees, rather than trenching. If possible, services should be installed under or immediately behind the kerb. (Medium importance, medium time frame)
- 25. Council should adopt the policy that waste from drainage pits or road grading will not be left on nature strips with native vegetation. (Medium importance, medium time frame)
- 26. Council should adopt the policy that native vegetation on road edges will not be treated with herbicide or steam. VicRoads should be requested to adopt the same policy. (Medium importance, medium time frame)

Drainage works

- 27. Council should avoid and prevent further barrel draining or filling in of Knox's waterways and drainage lines. (High importance, medium time frame)
- 28. Where drainage works are required, for example to mitigate erosion problems, minimal damage must be done to existing vegetation, and there should be provision for revegetation of the site following the completion of earthworks. (High importance, medium to long time frame)

Special protection for rare or threatened flora and fauna

- 29. As part of its vision for 2020, Council should adopt the objective of no extinctions of native fauna and flora species from Knox, and reductions in the threats faced by threatened species. (Low importance, medium time frame)
- 30. Council should devise and implement a recovery program of breeding and planting of plant species that are threatened with extinction from Knox. Priority should be given to species on the basis of their threat level in Knox (particularly those that are critically endangered) and whether they are also threatened statewide. This project could be well assisted by cooperation with the Knox Environment Society, similarly to the Swordgrass Brown recovery project. Involvement should also be sought from the Department of Sustainability & Environment in the case of species that are rare or threatened statewide. (Medium importance, medium time frame)
- 31. Plant species that are threatened with extinction from Knox, and which are put at risk by a particular land development or works, will occasionally be relocated or propagated in response to the overlay recommendations of Section 5.5 and Appendices F, G and H. When this happens, the relocations and propagation should be coordinated within the recovery program discussed in recommendation 31. (Medium importance, medium time frame)
- 32. For security, information about the location of species that are rare in Knox or more widely should be exempted from public access under the Freedom of Information Act. (High importance, short time frame) *This is done in the Department of Sustainability and Environment.*

Harvesting of indigenous plants

33. All plants rescued from sites to be developed should be relocated to a safe area on the same site, or potted up for transplanting into other suitable sites. Species that are rare or threatened in Knox should be relocated in accordance with the program discussed at recommendation . (High importance, medium to long term).

Revegetation

34. In reserves that are recognised sites of biological significance, Council and Friends groups should generally plant species only from the range of species recorded from the EVCs concerned. Rare

exceptions will occur where the physical environment is dramatically altered, in which case species should be chosen from habitat types with similar characteristics (particularly drainage and aspect) to the current environment. (High importance, medium time frame)

- 35. Council should specify that plants provided to it for planting on Council land should be derived from parents in the same biogeographical zone as the planting site (see Section 3.2). (Medium importance, medium time frame)
- 36. When Council receives a public inquiry about selection of indigenous plants to be grown, the inquirer's attention should be drawn to recommendations 34 and 35. (Medium importance, medium time frame)
- 37. Council should continue to identify and implement revegetation projects that extend existing sites and rehabilitate gaps between sites. (Medium importance, continuing from present practice).
- 38. Council should identify sites where fencing and/or reduced mowing can be used to allow natural regeneration. (Medium importance, long time frame)
- 39. Council should liaise with VicRoads to prepare species selection guidelines for roadside plantings. (Medium importance, long time frame)

Supporting 'Friends' groups

- 40. Council should continue to make available to Friends groups the assistance of a Council officer or agent with expertise in bushland management. The officer or agent should attend occasional working bees of each Friends group. (High importance, continuing current practice).
- 41. Council should provide Friends Groups with any available information that would assist the group in its activities on their reserve, including access to the file of information about each reserve discussed in recommendation 7. (High importance, continuing current practice).
- 42. Council should consider providing basic training in appropriate health and safety issues for bushland volunteers, perhaps including herbicide use. This might be done in conjunction with neighbouring municipalities or the Catchment Management Authority. (High importance).
- 43. Council should offer funding support to Friends Groups for ongoing administrative expenses. (High importance).

Publicity and promotion

- 44. Council should advertise and increase public awareness of new planning controls that are introduced in response to this report. (High importance, medium time frame)
- 45. Council should update its brochure titled '*Your guide to understanding vegetation controls in Knox*' to make it conform to any planning scheme amendment that may arise as a result of this report. (High importance, medium time frame)
- 46. Council should prepare a brochure explaining what a recognised Site of Biological Significance is, what it means to an owner of a site on private land, the importance of protecting significant sites, and basic information about what protection typically involves. Attention should be drawn to the requirement of a permit for removal, lopping and destruction of vegetation, including by burying or other means. Brochures from Cardinia and Yarra Ranges Shires serve as good models. See also Section 5.6.1. (High importance, medium time frame)
- 47. The brochure above should be sent to owners and neighbours of sites of biological significance, with appropriate cover letters. Personal approaches should also be made where appropriate. Council should also consider organising a seminar on the subject for the same group of people. (High importance, medium time frame)
- 48. The brochure above should be provided to people who contact Council as prospective purchasers of sites of biological significance (or their conveyancers). (Medium importance, medium time frame)

- 49. Council could consider introducing a scheme like Maroondah City Council's 'Biodiversity Rating Concession Program' to provide financial rewards and practical assistance for landowners who manage and protect significant habitat (Section 5.6.1). (Medium importance, medium time frame)
- 50. A brochure and public awareness program should be arranged about being a good neighbour to bushland in Knox. It would cover fire hazard, nutrient seepage, waste dumping (particularly garden waste), encroachment of buildings too close to bushland (particularly reserves), and similar issues. See also Sections 4.3, 4.7 and 4.10. (Medium importance, medium time frame)

Bibliography

- Adams R. & Simmons D. (1989). 'Botanical Survey and Guidelines for the Management of Remnant Native Vegetation in the Dandenong Valley Metropolitan Park', a report to MMBW Waterways and Parks Division. 149 pp.
- Alexander N. and Taylor R. (Eds.) (1996). Executive Summary to the report 'Australia: State of the Environment 1996'. An independent report presented to the Commonwealth Minister for the Environment by the State of the Environment Advisory Council. CSIRO Publishing, Collingwood.
- Allaway, Mark, and Associates (1993). 'Indigenous Vegetation survey to Major Road Reserves Phase 2 A Management Strategy for Remnant Roadside Vegetation', report to City of Knox.
- Anon (1991). 'Conference Proceedings: The Impact of Cats on Native Wildlife'. 'Conclusions, Recommendations and Resolution'. Endangered Species Unit, Australian Nature Conservation Agency.
- Backhouse G.N. and Jeanes J.A. (1995). '*The Orchids of Victoria*'. 1st Edition. Miegunyah Press, Melbourne. 388 pp.
- Baker S. (1989). Wildlife: A corridor study. In: 'Koonung-Mullum: Forestway not Freeway!' (Eds. S. Baker and B. MacDonald). Natural History Network, Melbourne.
- Beauglehole A.C. (1983). 'The Distribution and Conservation of Vascular Plants in the Melbourne Area, Victoria'. Western Victorian Field Naturalists Clubs Association, Portland, Victoria. 156 pp.
- Briggs J. and Leigh J. (1996). 'Rare or Threatened Australian Plants'. CSIRO Publishing : Melbourne. 476 pp.
- Buchanan R.A. (1989). 'Bush Regeneration: Recovering Australian Landscapes'. 1st Edition. TAFE Student Learning Publications, New South Wales. 259 pp.
- Carr G.W., Yugovic J.V. and Robinson K.E. (1992). *Environmental Weed Invasions in Victoria: Conservation and Management Implications*'. 1st. Edition. Department of Conservation & Environment, Melbourne.
- Clemman N. (2000). 'Distribution, Habitat Utilisation and Management of the Threatened Swamp Skink (Egernia coventryi) at Liverpool Road Retarding Basin, Boronia', a report by the Arthur Rylah Institute for Environmental Research for Melbourne Water. 17pp.
- Commonwealth and Victorian Regional Forest Agreement Steering Committee (1997). 'Comprehensive Regional Assessment Central Highlands Biodiversity Assessment'. 282 pp.
- Conn B.J. (1993). Natural regions and vegetation of Victoria. In: *'Flora of Victoria, Volume 1, Introduction'*, D.B. Foreman and N.G. Walsh, Eds. 1st Edition. Royal Botanic Gardens, Melbourne.
- Cook D. (1994). 'Vegetation Community Survey for the Lysterfield Lake Park, Churchill National Park, ZA Land and Link Land'. Report to Department of Conservation & Natural Resources.
- Department of Natural Resources and Environment: See 'NRE' below.
- Department of Sustainability & Environment: See 'DSE' below.
- DSE (2003a). 'Advisory List of Rare or Threatened Plants in Victoria –2003'. East Melbourne. 34 pp.
- DSE (2003b). 'Advisory List of Threatened Vertebrate Fauna in Victoria 2003'. East Melbourne. 14 pp.
- DEST (1996). '*The National Strategy for the Conservation of Australia's Biological Diversity*'. Commonwealth Department of the Environment, Sport and Territories, Canberra. 54 pp. + 32 colour plates.
- Division of Animal Health (1988). 'Vertebrate Pest Control Manual'. Department of Agriculture NSW, Division of Animal Health.
- Douglas A.M. (1977) Some inimical effects of the domestic bee on the native flora and fauna. *The Western Australian Naturalist* **14**(1):1-2.
- FNCV (Field Naturalists Club of Victoria (1936). Report of field trip along railway line at Bayswater. *Victorian Naturalist* **53**: 112.
- Frood D. and Calder D.M. (1987). 'Nature Conservation in Victoria', volume 1. Victorian National Parks Association, Melbourne. 210 pp.
- Greening Australia (1995). 'Local Greening Plans: a Guide for Vegetation and Biodiversity Management'. Greening Australia, Canberra. 144 pp.
- Gullan P.K., Parkes D.M., Morton A.G. and Bartley M.J. (1979). 'Sites of Botanical Significance in the Upper Yarra Region'. Ministry for Conservation, Melbourne. 328 pp.

- Jones D.L. and Elliot W.R. (1986) 'Pests, Diseases and Ailments of Australian Plants'. 1st Edition. Lothian, Melbourne.
- Koehn, J.D. (1986). 'Dandenong Creek: Fishes, their Habitats and Management Recommendations'. Arthur Rylah Institute for Environmental Research Technical Report Series No. 51. Department of Conservation, Forests and Lands, Victoria.
- LCC (Land Conservation Council) (1991) Melbourne Area District 2 Review Descriptive Report'. ISBN 0-7241-9264-6. 397 pp.
- Lorimer G.S. (1997). A Management Plan for Cathies Lane Bushland, Wantirna South. For Knox City Council.
- Lorimer G.S. (1998). 'A Survey and Management Plan for Significant Vegetation of Roadsides in Knox'. Knox City Council : Wantirna South. 137 pp.
- Lorimer G.S. (1999a). A Management Plan for Coppelia Street Bushland, Wantirna South, for Knox City Council.
- Lorimer G.S. (1999b). 'Monitoring of Bushland Reserves in Knox'. Knox City Council : Wantirna South. 69 pp.
- Lorimer G.S. (2000a). Bushland Management Plan for Starlight Reserve, Rowville, for Knox City Council.
- Lorimer G.S. (2000b). Ecological burning trials in degraded open-forest remnants in Melbourne. *Proc. Ecological Society of Australia Conference*, Melbourne, 29th Nov 1st December 2000.
- Lorimer G.S. (2001a). 'Fire in Knox Bushland Reserves', for Knox City Council. 40 pp.
- Lorimer G.S. (2001b). 'Dandenong Valley Parklands Flora Recovery after Ecological Burns and Other Treatments'. Report to Parks Victoria. 29pp.
- Lorimer G.S. (2002). 'Monitoring of Bushland Reserves in Knox 2002 Review'. Knox City Council: Wantirna South. 55 pp.
- Lorimer G.S., Reid J.C., Smith L.P. and Moss H. (1997). 'Sites of Biological Significance in Maroondah'. Maroondah City Council : Ringwood, Victoria.
- Low T. (1994). Invasion of the savage honey-eaters. Australian Natural History 24(10):26-33.
- Melbourne Water (2004). 'Melbourne's Rivers and Creek 2004'. 39 pp, self-published. ISBN 0-9750921-8-9.
- Mueck S.G. and Timewell C.A. (1998). 'Ecological Assessment of Native Vegetation Adjacent to a Proposed Extension of the Lysterfield Quarry', a draft report prepared for Pioneer Concrete (Vic) Pty Ltd by Biosis Pty Ltd.
- National Land and Water Resources Audit (2002). 'Australian Terrestrial Biodiversity Assessment 2002'. Commonwealth of Australia : Turner, ACT. 195 pp. ISBN 0 0642 37137 7.
- NRE Department of Natural Resources and Environment, Victoria (2002a). 'Victoria's Native Vegetation Management A Framework for Action'. Melbourne. 59 pp.
- NRE Department of Natural Resources and Environment, Victoria (2002b). 'BioSites Sites of Biodiversity Significance in Port Phillip and Westernport Region, Victoria'. Melbourne. 102 pp plus map and compact disc.
- Oates A. and Taranto M. (2001). '*Vegetation Mapping of the Port Phillip & Westernport Region*'. Arthur Rylah Institute for Environmental Research (now part of the Department of Sustainability & Environment). Available from the department's website in two volumes. Note that the true date of release was 2002.
- Organ A. and Smith L. (2002). 'Flora and Fauna Assessment of Lot 2, 90 Jenola Parade, Wantirna South, Victoria'. Report of Biosis Pty Ltd project 2375.
- Paget A.N. (1985). 'A Revegetation Design Method', comprising Volume 1, 'Revegetation of Knox' and Volume 2, 'Appendices Data for Revegetation of Knox'. Bachelor of Applied Science (Landscape Architecture) thesis, Royal Melbourne Institute of Technology.
- Parkes D, Newell G and Cheal D (2003). Assessing the quality of native vegetation: The 'habitat hectares' approach. *Ecological Management & Restoration* **4** (supplement): S29-S38.
- Reid J.C., Lorimer G.S. and Moss H. (1997a). A Management Plan for Blind Creek Billabong, Ferntree Gully, for Knox City Council.
- Reid J.C., Moss H. and Lorimer G.S. (1997b). 'Vegetation Survey of Linear Reserves A Management Strategy for Riparian and Flood Plain Vegetation', for Knox City Council. 130 pages plus 18 colour A3 maps.
- Roadsides Conservation Committee (1995). 'Roadside Management Planning: Background and Guidelines'. Roadsides Conservation Committee of Victoria, Melbourne. (Loose-leaf folder).

- Sands D.P.A. and New T.R. (2002). '*The Action Plan for Australian Butterflies 2002*'. Environment Australia : Canberra. 382 pp.
- Saunders D.A., Hobbs R.J. and Margules D.R. (1991). Biological consequences of ecosystem fragmentation: A review. *Conservation Biology* **5**:18-32.
- Seebeck J., Greenwood L. and Ward D. (1991). 'Cats in Victoria'. Department of Conservation and Environment, Victoria. In: Anon (1991).
- Serena M, Thomas J.L. and Williams G.A. (1998). 'Status and Habitat Relationships of Platypus in the Dandenong Creek Catchment – II. Results of Surveys and Radio-Tracking Studies, September 1997 – March 1998'. Report from the Australian Platypus Conservancy to Melbourne Water.
- Romanowski N. (1993). Creating or restoring a wetlands area. Chapter 4 in '*Flora of Melbourne*', Revised Edition. Hyland House : Melbourne.
- SGAP (Society for Growing Australian Plants) (1993). 'Flora of Melbourne', Revised Edition. Hyland House : Melbourne.
- Specht R.L., Roe E.M. and Boughton V.H. (1974). Conservation of the major plant communities of Australia and Papua New Guinea. *Aust J. Bot. Suppl.* **7**:667.
- Taylor G. and Whelan R.J. (1988) Can honeybees pollinate *Grevillea? Australian Zoologist* 24(4):193-196.
- Thackway R. and Cresswell I.D. (1995) (Eds.). 'An Interim Biogeographic Regionalisation for Australia: A Framework for Setting Priorities in the National Reserves System Cooperative Program', Version 4.0. Australian Nature Conservation Agency : Canberra.
- Thompson I.R. (2004). Taxonomic studies of Australian *Senecio* (Asteraceae): I. The disciform species. *Muelleria* **19**:101-214.
- Walsh N.G. and Entwisle T.J. (1994). 'Flora of Victoria. Volume 2, Ferns and Allied Plants, Conifers and Monocotyledons'. Inkata Press, Chatswood, NSW. 946 pp. plus colour plates.
- Walsh N.G. and Entwisle T.J. (1996). '*Flora of Victoria. Volume 3, Dicotyledons, Winteraceae to Myrtaceae*'. Inkata Press, Port Melbourne, Vic. 1093 pp. plus colour plates.
- Walsh N.G. and Entwisle T.J. (1999). 'Flora of Victoria. Volume 4, Dicotyledons, Cornaceae to Asteraceae'. Inkata Press, Port Melbourne, Vic. 1088 pp. plus colour plates.
- Water Ecoscience (1998). 'Vegetation Assessment and Protection Strategy for the City of Knox'. Report and series of maps for Knox City Council : Wantirna South.
- Western D. (1985). 'Knox Nature Trail'. Illustrated by A.N. Paget. Self-published. 120pp.
- Williams G.A. (2002). 'Distribution of Platypus along Upper Dandenong and Dobsons Creeks Results of Live Trapping Surveys, October 2001 – February 2002', a report by the Australian Platypus Conservancy to Knox City Council, April 2002. 13 pp.
- Williams G.A., Serena M. and Swinnerton M. (2001). 'Distribution of Platypus along Corhanwarrabul, Monbulk and Ferny Creek – Results of Live Trapping Surveys, November 2000 – March 2001', a report by the Australian Platypus Conservancy to Knox City Council, May 2001. 16 pp.
- Williams L.M., Yugovic J.V., McGuckin J., Humphrey P. and Larwill S. (1998). Flora and Fauna chapter in Supplementary Appendix H of 'Scoresby Transport Corridor Environment Effects Statement', jointly published by Sinclair Knight Merz, VicRoads and the Department of Infrastructure, Victoria.
- Willis J.H. (1962). Land flora of Victoria. In '*Victorian Year Book*', no. 76, pp. 1-36 and map. Commonwealth Bureau of Census and Statistics, Melbourne.
- Woodgate P.W., Peel W.D., Ritman K.T., Coram J.E., Brady A., Rule A.J and Banks J.C.G. (1994). 'A Study of the Old-Growth Forests of East Gippsland'. Department of Conservation & Natural Resources, Victoria.
Appendix A – Vegetation Communities in Knox

The characteristics and conservation status of the various habitat types identified in Knox during this study are described below. They are classified according to the Department of Sustainability & Environment's system of Ecological Vegetation Classes, or EVCs, wherever possible. The plant species quoted are typical for the Melbourne region (particularly Knox) and are often not representative of other regions.

EVC 8 – Wet Heathland

Despite the use of the term 'Heathland', the vegetation described by Oates and Taranto (2001) for this EVC is too tall (over 3 m) to be strictly a heathland; It would be more accurately described as a scrub.

- Quick recognition: At maturity, Wet Heathland becomes dense, tangled, scrubby vegetation several metres tall (apart from sparse trees above), with numerous characteristic ground flora species such as dense *Empodisma minus* and abundant *Gonocarpus micranthus, Selaginella uliginosa, Patersonia* species and *Lepidosperma filiforme*. Tree ferns are usually present, unlike Damp Heathy Woodland. Leeches are usually abundant.
- Position in the landscape: Poorly drained lower hill slopes and swampy tracts, the soil remaining damp or wet except during the driest spells of summer.
- Tree canopy: Sparse *Eucalyptus ovata*, typically less than 15 m tall. *Eucalyptus cephalocarpa* and *Acacia mearnsii* replace the *E. ovata* in some locations outside Knox.
- Shrubs: There is a multi-layered scrub, the tallest species being any mixture of *Melaleuca squarrosa*, *M. ericifolia*, *Leptospermum scoparium*^{*} and *Ozothamnus ferrugineus*. Beneath these are *Allocasuarina paludosa*, *Hakea nodosa* and *Leptospermum lanigerum*. The main smaller shrubs are *Epacris* species, *Goodenia ovata*, *Pultenaea gunnii* and *Senecio minimus*. *Almaleea subumbellata* is a good indicator species, in some cases abundant and in other cases scarce.

Vines: Scarce or absent.

- Ferns: *Lindsaea linearis* can be abundant. *Cyathea australis* is typically present in small numbers, but rarely as large specimens (at least in Knox).
- Ground flora: Rich in species and quite distinctive. Dense, particularly with *Empodisma minus*. Sedges are abundant, notably *Lepidosperma filiforme, Baumea tetragona, Baumea rubiginosa, Schoenus lepidosperma, Tetraria capillaris* and *Schoenus apogon*, along with the ubiquitous *Gahnia radula* and sometimes *Gahnia sieberiana*. Either or both of *Patersonia occidentalis* and *P. fragilis* are abundant, as are *Centella cordifolia, Gonocarpus micranthus* and (in season) *Drosera pygmaea* and *Centrolepis* species. Orchids other than *Cryptostylis subulata* are quite scarce.
- **Conservation Status**: Wet Heathland is very rare in Knox and for tens of kilometres around. The only known occurrence in Knox is at Wicks Reserve in The Basin. Its conservation status is regarded by the Department of Sustainability and Environment as 'Depleted' in the 'Highlands Southern Fall' bioregion, of which the Knox occurrence is part.

EVC 16 – Lowland Forest

The Lowland Forest in Knox is a good match for the floristic community labelled 'SL7c' by Gullan *et al.* (1979).

Quick recognition: Dominated by *Eucalyptus obliqua* typically 20-30 m tall. Mature, intact stands contain dense shrubs and ground flora, the latter containing <u>abundant *Tetrarrhena juncea*</u> and often being so deep and tangled as to impede walking. *Acacia melanoxylon* and frequent patches of bracken are present, unlike EVC 793 (Damp Heathy Woodland). *Banksia marginata, B. spinulosa* or both tend to be abundant in intact

^{*} Note that Oates and Taranto (2001) mention *L. continentale*, which should be taken to embrace *L. scoparium* according to current taxonomic convention as given in Walsh & Entwisle (1996).

stands, typically along with other members of the Protea family (e.g. *Hakea*, *Lomatia*, *Persoonia*). Herbs with short-lived stems and foliage are much less abundant than tough or wiry ground flora species.

- Position in the landscape: Shallow, lower slopes of hills. Lowland Forest grades into Herb-rich Foothill Forest (EVC 23) and eventually Damp Forest (EVC 29) in more sheltered and less drought-prone environments. In less sheltered places, it may adjoin Grassy Forest (EVC 128) further uphill or Valley Heathy Forest (EVC 127) on shallow slopes with lower soil fertility or soil depth.
- Tree canopy: Dominated by *Eucalyptus obliqua* typically 22-25 m tall, often with lesser numbers of *E. radiata*. Sometimes also with smaller numbers of *E. cephalocarpa* or other eucalypts that are outliers from adjacent vegetation types.
- Lower trees: Acacia melanoxylon is present in varying density, as distinct from Damp Heathy Woodland (EVC 793) where that species is rarely present at all. *Exocarpos cupressiformis* may also be present.
- Shrubs: Moderately to very dense when allowed to accumulate, dominated by various combinations of *Leptospermum scoparium*, *Cassinia aculeata*, *Spyridium parvifolium*, *Acacia mucronata*, *A. verticillata*, *A. leprosa*, *Olearia lirata*, *Banksias* and *Hakeas*. *Pultenaeas* are common. The proportions of these species depends greatly on the recent history of fire and clearing. *Acacia mucronata* and members of the Protea family, including *Banksias*, *Hakeas* and *Persoonias*, are much more abundant in Lowland Forest than any other EVC in Knox.

Vines: Rather scarce.

Ferns: Patches of dense bracken are scattered liberally, sometimes interspersed with Calochlaena dubia.

- Ground flora: At maturity, usually dense, tangled and at least knee-deep. Rather heathy and with <u>an abundance</u> of the wiry grass *Tetrarrhena juncea*. Other abundant species are *Gahnia radula, Lomandra* species and often *Xanthorrhoea minor, Empodisma minus* and *Lepidosperma elatius*. The density of the wiry, tangled ground flora can make movement through the vegetation awkward. Tufted grasses, particularly *Joycea pallida* and *Themeda triandra*, are present but in lower density than Grassy Forest or Damp Heathy Woodland. The dense undergrowth usually suppresses the richness and abundance of small wildflowers such as orchids.
- Conservation Status: Lowland Forest is rare in Knox but secure at Wicks Reserve. In the hills to the east it is common and secure and hence the Department of Sustainability & Environment gives it the conservation status rating 'Least Concern' in the 'Highlands Southern Fall' bioregion. It is much less common in the Gippsland Plain bioregion (which includes most of Knox) and the department rates it as 'Vulnerable' there.

EVC 18 – Riparian Forest

- Quick recognition: Identifiable as a gallery or corridor of very tall *Eucalyptus viminalis* along perennial streams, with abundant *Acacia dealbata* and *Pomaderris aspera* in a lower tree layer and abundant *Coprosma quadrifida*, soft-leafed shrubs and *Poa ensiformis* in the understorey. Wetland areas often occur within this EVC. The presence of any *Hymenanthera dentata* or *Rapanea howittiana* is more likely to indicate Floodplain Riparian Woodland (EVC 56).
- Position in the landscape: Along stretches of major streams where deep alluvium has accumulated, the soil kept permanently moist by the associated stream.
- Tree canopy: Dominated by very tall *Eucalyptus viminalis* usually over 30 m tall, sometimes with lesser numbers of other eucalypt species from neighbouring vegetation types.
- Lower trees: Tall *Acacia melanoxylon*, *A. dealbata* and *Pomaderris aspera* are usually present, but the latter two species may be left absent or scarce after clearing. *Rapanea howittiana* is rarely if ever present, distinguishing Riparian Forest from Floodplain Riparian Woodland (EVC 56).
- Shrubs: Very variable in density depending on the history of disturbance (including floods), comprising abundant *Coprosma quadrifida* and a mixture of soft-leafed shrubs that typically include *Prostanthera*

lasianthos, Olearia lirata and *Ozothamnus ferrugineus* in more intact stands, and sometimes *Gynatrix pulchella*. Patches of dense *Melaleuca ericifolia* are common. *Hymenanthera dentata* is rarely if ever present, distinguishing Riparian Forest from Floodplain Riparian Woodland (EVC 56).

Vines: Clematis aristata and sometimes Pandorea pandorana are common.

- Ground flora and ferns: At maturity, usually dense and approximately knee-deep, with extensive grassy areas and patches of sedges in wetter spots. The grassy areas are normally dominated by *Poa ensiformis*, with abundant *Lomandra longifolia*, *Acaena novae-zelandiae* and patches of ferns such as *Adiantum aethiopicum* and *Pteridium esculentum*. The wetter spots are dominated by *Lepidosperma elatius*, *Carex* species (particularly *C. appressa*) or both. *Gahnia* species may be abundant throughout. The ferns *Cyathea australis* and *Blechnum* species are typically present, concentrated along the stream bank.
- Conservation Status: Riparian Forest occurs sparingly in Knox. Within 150 km of Melbourne, it is generally seriously ecologically degraded by clearing, agriculture and weed invasion. It is significant for its critical roles in maintaining stream ecology, bio-corridors and waterway protection through its particular characteristics of shade, flood response, nutrient cycling, use by fauna and (when intact) resistance to serious riparian weeds. Without taking these factors into account, the Department of Sustainability & Environment gives the conservation status (not significance) of Riparian Forest as 'Vulnerable' in the Gippsland Plain bioregion (which includes most of Knox) and 'Least Concern' in the 'Highlands - Southern Fall' bioregion. The department takes the latter bioregion to include Riparian Forest from Upper Ferntree Gully through to Far East Gippsland, and the 'Least Concern' status relies on the existence of large areas of intact Riparian Forest far to the east of Knox. Regardless, Riparian Forest is vulnerable within 150km of Melbourne and extremely important for ecology and waterway protection, so any occurrences in Knox that are not seriously degraded should be deemed highly significant. 'Victoria's Native Vegetation Management - A Framework for Action' (NRE 2002a) explicitly recognises the very high significance of riparian vegetation for waterway protection, but not for the ecology of streams or riparian corridors. It does, however, indicate on p.22 that an assessment of any site's conservation significance should take into account 'the strategic location in the local landscape', which would generally be very important for Riparian Forest.

EVC 22 – Grassy Dry Forest

The occurrences of Grassy Dry Forest in Knox fall into two distinct types: Box-Stringybark Woodland in the Dandenongs and what is introduced here, for the first time, as 'Lysterfield Grassy Dry Forest' associated with the Lysterfield Granodiorite geological formation. The description below covers both types, and this is followed by a formal description of the Lysterfield Grassy Dry Forest (to meet the requirements for recognition of a new community under the Native Vegetation Plan for the Port Phillip and Westernport region).

- Quick recognition: A low, rather sparse tree canopy combined with a shrub layer that is sparse except for patches of opportunistic species following soil disturbance, and sparse, grassy ground flora with abundant herbs (particularly monocots such as lilies or orchids), leaving plenty of exposed ground, lichens or moss.
- Position in the landscape: Hilltops, ridgetops or dry slopes with shallow, stony soil. Further down the slope or on adjacent eastern or southern aspects, there is typically Grassy Forest (EVC 128) or Valley Grassy Forest (EVC 47). Grassy Dry Forest gives way to Shrubby Foothill Forest (EVC 45) at elevations above about 400 m in the Dandenong Ranges.
- Tree canopy: Usually 8-15 m tall, with the crowns mostly separated and rather transparent to sunlight. The Box-Stringybark Woodland community in Knox is dominated by *Eucalyptus macrorhyncha* and (usually) *E. goniocalyx* with fewer *E. melliodora* and *Acacia mearnsii*. The Lysterfield Grassy Dry Forest differs in that *E. macrorhyncha* is absent, replaced by stunted *E. radiata* and/or *E. dives*. (The distinction between the last two species is sometimes unclear.) *Allocasuarina littoralis* and *Acacia implexa* are fairly common in the Lysterfield Hills and decrease in frequency toward the north, becoming absent north of The Basin.

Lower trees: Sparse *Exocarpos cupressiformis*, sometimes with scattered *Acacia melanoxylon*.

- Shrubs: Sparse except for patches where soil disturbance has given rise to patches of opportunistic species, particularly *Kunzea ericoides* and *Acacia paradoxa*, that may become quite dense.
- Vines: Twiners have very low foliage cover and they rarely climb much higher than 2 m. *Comesperma volubile* is the most common species. *Clematis microphylla* is often present in Grassy Dry Forest but apparently absent from other vegetation types in Knox.
- Ferns: Sparse except for localised patches. *Cheilanthes* species occur more in Grassy Dry Forest than elsewhere in Knox, but still not abundantly.
- Ground flora: Grassy and with substantial spaces between the tussocks. The dominant species may be *Joycea pallida, Themeda triandra, Poa morrisii* or (particularly in regrowth) *Microlaena stipoides*, depending on the recent history of fire or other disturbance. *Lepidosperma laterale, Lomandra filiformis* subsp. *coriacea* and *Gonocarpus tetragynus* are conspicuous. Herbs are abundant, particularly monocots such as lilies and orchids, to the extent that *Arthropodium strictum* can sometimes become dominant in spring and early summer. The ground flora species are mostly present also in Grassy Forest (EVC 128); However Grassy Forest has less space between the grass tussocks, a correspondingly lower density of herbs between the tussocks, and certain additional ground flora species that are indicative of higher moisture availability (e.g. *Platylobium formosum*).
- Conservation Status: Box-Stringybark Woodland occurs on the eastern fringe of Knox, extending into the adjacent Dandenong Ranges National Park where it is much better represented and more secure. Gullan *et al.* (1979, p.160) describe it as 'A rare community which was probably much wider spread'. Lysterfield Grassy Dry Forest is known to occur on the Lysterfield Hills and in a small, isolated patch in Baluk Willam Flora Reserve in Belgrave South.

At the EVC level, the Department of Sustainability & Environment rates the conservation status of Grassy Dry Forest as 'Least Concern' in the Highlands Southern Fall bioregion (which includes all of Knox's occurrences). However, this is on the basis of the relatively high abundance of forms of Grassy Dry Forest that do not occur in Knox, such as forms with *Eucalyptus polyanthemos*. There is support within the botanical community to split up the present concept of Grassy Dry Forest into multiple EVCs, which would lead to better recognition that the forms of Grassy Dry Forest in Knox are not truly of 'Least Concern'.

EVC 22a – Lysterfield Grassy Dry Forest

This is the original description of this community.

- Type locality: The uppermost corner of Heany Park, Rowville, is taken here to be the type locality for Lysterfield Grassy Dry Forest, i.e. the vegetation present there is taken to be the standard against which to compare other vegetation for potential recognition as the same community.
- Conformity with Grassy Dry Forest: The following characteristics of Lysterfield Grassy Dry Forest in a longundisturbed state make it fit best within EVC 22 – Grassy Dry Forest:
- It is located on ridges, upper slopes and middle slopes of hilly terrain, mainly with northerly or westerly aspects;
- The soil is shallow, stony, moderately fertile, freely draining, moist in winter and very dry in the early months of the year;
- Tree stature and the foliage density of all vegetation strata are reduced far below what the same species achieve in conducive conditions;
- The canopy trees are eucalypts typically 12m tall, with the crowns mostly rather transparent to sunlight and separated from each other;
- The density of shrubs is sparse except for thickets of opportunistic species (e.g. *Kunzea ericoides* and *Acacia paradoxa*) that establish following soil disturbance;
- Ferns are very scarce or absent;

- In an undisturbed state, the ground layer is rather sparse (the foliage cover of vascular plants being typically 50%) and overwhelmingly dominated by grass (including *Joycea pallida*);
- Drought-tolerant graminoids such as Lepidosperma laterale and Lomandra filiformis subsp. coriacea are abundant, and so are geophytes and cryptogams.

Distinctive features: Lysterfield Grassy Dry Forest is distinguished from other Grassy Dry Forest as follows:

- The canopy trees include stunted *Eucalyptus radiata* and/or *E. dives* (only about10-12 m tall), along with the more common members of Grassy Dry Forest, *E. goniocalyx, Acacia mearnsii* and, in proximity to Valley Grassy Forest, *E. melliodora*;
- *E. macrorhyncha* is absent;
- Allocasuarina littoralis and Acacia implexa are often present as canopy trees (or slightly shorter);
- The ground flora is not particularly rich in species of geophytes, even though the foliage cover of some species (such as *Arthropodium strictum*) can be very high in season. Orchids are apparently not abundant. These features may be at least partly due to past grazing and clearing.

Description:

- The canopy trees are as described above;
- *Exocarpos cupressiformis* are slightly lower and much sparser than the canopy trees;
- Shrubs are sparse except for patches where soil disturbance has given rise to dense patches of opportunistic species, particularly *Acacia paradoxa* or *Kunzea ericoides*;
- Vines are represented by a fairly high density of the light twiner *Comesperma volubile*, and smaller numbers of *Clematis microphylla* and *Billardiera scandens*;
- Ferns are very sparse and do not include characteristic species of Grassy Forest such as *Pteridium* esculentum and Adiantum aethiopicum;
- The ground layer in its undisturbed state is grassy and has substantial spaces between the tussocks. It is dominated by various mixtures of *Joycea pallida*, *Microlaena stipoides*, *Lomandra filiformis* subsp. *coriacea*, *Themeda triandra* and/or *Poa morrisii*. These are mixed with a range of other grasses and *Lepidosperma laterale*. *Dichondra repens*, *Gonocarpus tetragynus*, *Bossiaea prostrata*, *Tricoryne elatior* and *Lagenophora gracilis* are abundant. Geophytes (and particularly *Arthropodium strictum*) are abundant but not represented by many species;
- Ground flora species of more mesic environments (e.g. *Platylobium formosum* and *Adiantum aethiopicum*) are absent, distinguishing this community from Grassy Forest (EVC 128), with which it has been sometimes confused.
- Known distribution: Figure 5 below depicts the pre-European and current distribution of Lysterfield Grassy Dry Forest in the Lysterfield Hills, as determined for this report using site inspections. The estimated areas are 145 hectares before settlement and 50 hectares currently. In addition, there is a patch of this community measuring approximately 3,000 m² within Baluk Willam Flora Reserve (120 m southeast of the dead end of Orchid Rd). The Department of Sustainability & Environment's (undated) current BioMap of pre-1750 EVCs shows Grassy Dry Forest with a similar distribution to Figure 1, but expanded to encompass a band of vegetation immediately below the Grassy Dry Forest that is regarded here as Valley Grassy Forest (with deeper soil, *Eucalyptus melliodora* the most abundant eucalypt and with occasional *E. rubida*).
- **Conservation Status**: Taking into account the pre-European and current distributions and the very small proportion that is on public land or in reasonable ecological condition, Lysterfield Grassy Dry Forest is a rare and threatened community, particularly as most of the remaining area is within quarry land. It is recommended that Lysterfield Grassy Dry Forest should be recognised with a conservation status more appropriate than the 'Least Concern' rating that the Department of Sustainability & Environment accords to Grassy Dry Forest generally in the Highlands Southern Fall bioregion.

Figure 5. Map showing the distribution of Lysterfield Grassy Dry Forest in the Lysterfield Hills. The orange-outlined areas depict the pre-European distribution and the hatched areas depict the current distribution, based on topography, geology and inspections of Heany Park, adjoining land and roads bordering the quarries. Some areas that are not hatched, particularly around the Boral quarry, may regrow into Lysterfield Grassy Dry Forest if allowed to do so.

Comments: The floristic diversity, the ground flora density and the stature of trees in Lysterfield Grassy Dry Forest are substantially lower than in nearby Grassy Dry Forest between Ferntree Gully and Montrose and in Croydon North (e.g. Hochkins Ridge Flora Reserve). This is attributable to different geological formations.

Similarly, Grassy Forest that abuts Lysterfield Grassy Dry Forest has substantially lower floristic diversity, ground flora density and tree stature than Grassy Forest in the other locations just mentioned.

Sites inspected: Areas of Heany Park, surrounding properties, Cornish Rd and Baluk Willam Flora Reserve were inspected and found to conform with the above description of Lysterfield Grassy Dry Forest (allowing for human alterations). The Lysterfield Hills quarries could only be inspected from the boundaries, and the modified state of the vegetation made interpretation difficult. Churchill National Park deserves further investigation.

The following nearby sites appear on BioMaps as Grassy Dry Forest and were inspected on 7th August 2003, but no Grassy Dry Forest was found:

- The northeastern slope and hilltop of Sugarloaf Hill, Lysterfield (viewed from 250-300 m away, on Kerrs Lane) where the tree stature and density appear too great for Grassy Dry Forest;
- Near the corner of Wellington Rd and Spring Rd in Belgrave South, where the BioMap of 'Extant EVCs' depicts Grassy Dry Forest but the pre-1750 EVC BioMap depicts Grassy Forest. The ground flora are dense (possibly as an artifice of human modification) and more consistent with Grassy Forest;
- The neighbourhood of Mervyn Rd and The Strand in Belgrave South, where the dominant eucalypts are *E. cephalocarpa* and *E. obliqua*, not at all consistent with Grassy Dry Forest;

• Mt Morton, a basalt hilltop where the tree canopy has been decimated but still supports remnant tall, robust *E. radiata* and *E. ovata*, not at all consistent with Grassy Dry Forest (although a nearby, inaccessible ridge to the west may support Grassy Dry Forest).

EVC 23 – Herb-rich Foothill Forest

- Quick recognition: In Knox, Herb-rich Foothill Forest is a densely grassy, tall forest dominated by *Eucalyptus* obliqua and *E. radiata*, with fairly abundant vines (*Clematis aristata, Pandorea pandorana, Glycine clandestina, Comesperma volubile*), scattered ferns, and species of shrubs and ground flora that reflect the associated soil moisture availability. Key indicator species in the Dandenongs are *Coprosma quadrifida, Ozothamnus ferrugineus, Acacia verticillata, Pimelea axiflora, Olearia lirata, Poa ensiformis, P. tenera, Echinopogon ovatus* and *Desmodium gunnii*. In areas of lower rainfall, *Poa labillardierei* tends to replace *P. ensiformis* and *Pimelea axiflora* does not occur. *Joycea pallida* only occurs as outliers from adjoining, drier forest types.
- Position in the landscape: Sheltered hillsides or gullies, typically flanked by Grassy Forest (EVC 128) or Grassy Dry Forest (EVC 22). It gives way to Shrubby Foothill Forest (EVC 45) at elevations above 400 m or so in the Dandenong Ranges, and Damp Forest (EVC 29) is often found below if soil moisture availability is high enough.
- Tree canopy: Crowns touch each other, 20-40 m tall. *Eucalyptus obliqua* and *E. radiata* dominate, often with smaller numbers of other eucalypts that are present in adjacent vegetation types (particularly *E. cypellocarpa*).
- Lower trees: Usually not much different from whatever is the closest other forest type, typically comprising *Acacia melanoxylon*, *Acacia dealbata* (or *Acacia mearnsii* in drier areas) and sometimes *Exocarpos cupressiformis*.
- Shrubs: May be sparse or dense, depending on surrounding vegetation types and the recent history of disturbance by fire or clearing. Key indicator species are *Coprosma quadrifida*, *Ozothamnus ferrugineus*, *Acacia verticillata*, *Olearia lirata* and (in the Dandenong Ranges) *Pimelea axiflora*. *Goodia lotifolia* may also be present, in which case it helps to distinguish from Grassy Forest.
- Vines: Typically, a high proportion of the shrubs (excluding thickets) support vines, particularly *Clematis* aristata, *Pandorea pandorana* or *Glycine clandestina*.
- Ferns: Pteridium esculentum, Adiantum aethiopicum and sometimes Calochlaena dubia occur in patches.
- Ground flora: Densely grassy (except where shrub thickets suppress grasses) and with many species of forbs between the tussocks. The dominant species may be *Themeda triandra*, *Poa* species (typically mixtures of *P. ensiformis*, *P. morrisii* and *P. tenera*) and *Microlaena stipoides*, depending on the recent history of fire or other disturbance. *Echinopogon ovatus* is usually present, which is not true of related, drier vegetation types such as Grassy Forest. *Joycea pallida* only occurs as outliers from adjoining, drier forest types. *Tetrarrhena juncea* is often absent but may be rather abundant in proximity to Lowland Forest or Damp Forest. The many species of forbs that are likely to be found are very similar to Grassy Forest except that *Desmodium gunnii* and *Gonocarpus humilis* have much greater affinities with Herb-rich Foothill Forest.
- Conservation Status: Herb-rich Foothill Forest occurs on the eastern fringe of Knox, extending into the adjacent Dandenong Ranges National Park where it is much better represented and more secure. The Department of Sustainability & Environment rates the conservation status of Herb-rich Foothill Forest as 'Least Concern' in the 'Highlands Southern Fall' bioregion and 'Vulnerable' in the 'Gippsland Plain' bioregion.

EVC 29 – Damp Forest

Within Knox, this is the same as floristic community 'SL4b' of Gullan *et al.* (1979). It is a broadly circumscribed EVC and the ground flora may be very ferny, grassy or sedgey.

- Quick recognition: A very tall canopy comprising any mixture of *Eucalyptus obliqua, E. cypellocarpa* and/or *E. radiata*, with abundant vines and dense ground flora dominated by ferns, large sedges or both.
- Position in the Knox landscape: Sheltered gullies or valleys, mainly in the Dandenong Ranges.
- Tree canopy: Very tall (25-50 m), dominated by *Eucalyptus cypellocarpa*, *E. obliqua* or both, often with *E. radiata* and sometimes eucalypts from adjacent communities.
- Lower trees: Acacia melanoxylon is usually present but sometimes quite sparse. Pomaderris aspera and Olearia argophylla are almost always present close to any creek flowing through intact Damp Forest and they serve as good indicator species. A. dealbata is sometimes conspicuous.
- Shrubs: The most common shrubs are *Acacia leprosa*, *A. verticillata*, *Coprosma quadrifida*, *Goodenia ovata*, *Leptospermum scoparium* and *Olearia lirata*. *Prostanthera lasianthos* is occasional. *Bursaria spinosa*, *Cassinia aculeata* or *Kunzea ericoides* may also be conspicuous. The density of shrubs is typically moderate except for occasional patches that may be denser.
- Vines: Abundant, particularly Clematis aristata, Pandorea pandorana and sometimes Glycine clandestina.
- Ground flora: Dense and typically waist- or chest-deep, dominated by ferns interspersed with large sedges (*Lepidosperma elatius*), and with abundant grass. *Pteridium esculentum* and *Calochlaena dubia* are the main ferns. *Poa ensiformis*, *Poa tenera* and *Tetrarrhena juncea* are the main grasses. *Lomandra longifolia* and *Acaena novae-zelandiae* are usually abundant. *Stellaria flaccida* is a good indicator species, but often scarce or absent.
- Conservation Status: Damp Forest occurs mainly on the eastern fringe of Knox, extending into the adjacent Dandenong Ranges National Park where it is much better represented and more secure. The Department of Sustainability & Environment rates the conservation status of Damp Forest as 'Least Concern' in the 'Highlands Southern Fall' bioregion, which includes nearly all of Knox's occurrences. The exception is at Old Joes Creek in Boronia, which can be viewed as an outlier of the same bioregion.

EVC 30 – Wet Forest

Wet Forest appears on the Department of Sustainability & Environment's BioMaps at Knox's eastern extremity in Sassafras, but this is questionable. The vegetation that is mapped as Wet Forest does have some elements consistent with that EVC, notable *Australina pusilla*, *Pittosporum bicolor* and *Sambucus gaudichaudiana*, but these are also consistent with a marginal form of Damp Forest (EVC 29). More importantly, none of the following species that are usually associated with Wet Forest could be found there: *Eucalyptus regnans, Bedfordia arborescens, Hedycarya angustifolia, Dicksonia antarctica, Blechnum wattsii*. The vegetation is therefore treated here as being a marginal form of Damp Forest that approaches Wet Forest.

Conservation Status: Wet Forest is well reserved and secure in the Dandenong Ranges National Park immediately east of Knox. The Department of Sustainability & Environment rates the conservation status of Wet Forest as 'Least Concern' in the 'Highlands – Southern Fall' bioregion, which includes the Dandenong Ranges.

EVC 45 – Shrubby Foothill Forest

Quick recognition: Hillside forest with a dense layer of shrubs in the height range 1.5-3 metres, largely made up of shrubby wattles (characteristically including *Acacia mucronata*), *Spyridium parvifolium, Pultenaea scabra* and/or *Pultenaea gunnii*. The smaller shrub, *Goodenia ovata*, is usually also abundant. Ferns are usually limited to occasional patches of *Pteridium esculentum*.

Position in the landscape: Hillsides of the Dandenong Ranges at elevations above approximately 400 m.

Tree canopy: Crowns touch each other, 20-40 m tall. Dominated by *Eucalyptus obliqua, E. cypellocarpa* and/or *E. radiata. E. goniocalyx* or *E. macrorhyncha* are sometimes present in proximity to other EVCs where those species dominate.

- Lower trees: Acacia melanoxylon and Exocarpos cupressiformis are common. Acacia dealbata can be fairly dense, but mostly in shrub form rather than as trees.
- Shrubs: Key indicator species are Acacia mucronata, Spyridium parvifolium and Pultenaea scabra, which are abundant within a dense layer that also includes other shrubby wattle species (e.g. A. stricta, A. myrtifolia, A. verticillata), Goodenia ovata, Polyscias sambucifolia and often Olearia lirata. Lomatia ilicifolia may be fairly abundant.
- Vines: Fairly abundant, particularly *Clematis aristata*, *Pandorea pandorana*, *Glycine clandestina*, *Billardiera scandens* and *Comesperma volubile*.
- Ferns: Usually limited to occasional patches of Pteridium esculentum.
- Ground flora: Fairly dense and not particularly rich in species, comprising a mixture of grasses, sedges and forbs. The grasses include *Joycea pallida*, *Poa ensiformis*, *P. morrisii*, *Tetrarrhena juncea* and *Microlaena stipoides*. *Gonocarpus humilis* and/or *Gonocarpus tetragynus* are abundant. *Dianella tasmanica*, *Tetratheca* species and *Gahnia radula* are common.
- Conservation Status: Shrubby Foothill Forest occurs in Knox only on the slopes above the upper reaches of Dobsons Ck in The Basin. It is common higher in the Dandenong Ranges, particularly the western slopes and the former Olinda State Forest. It is also scattered across the ranges to the east and has not been favoured for agriculture, so the Department of Sustainability & Environment rates its conservation status as 'Least Concern' in the 'Highlands Southern Fall' bioregion, which includes Knox's occurrence.

EVC 47 – Valley Grassy Forest

- Quick recognition: A tree canopy dominated by *Eucalyptus melliodora*, often mixed with *E. radiata*, not on swampy or poorly drained soil (which would suggest Swampy Riparian Woodland). *E. rubida* is not always present, but when it is, it is a very good indicator of this EVC. The ground layer is very grassy and herbaceous, as distinct from the related Valley Heathy Forest, which has more woody and tough ground flora species such as *Hibbertia riparia* and *Platylobium obtusangulum*.
- Position in the landscape: Downhill from Grassy Dry Forest (EVC 22), or on low ridges and hills of hilly terrain where soil conditions are too mesic (conducive to plant growth) for Grassy Dry Forest to establish. Grassy Forest (EVC 128) occupies equivalent positions in areas of higher winter rainfall.
- Tree canopy: Crowns separated slightly or just touching each other, 20-30 m tall in Knox and surrounding areas. *Eucalyptus melliodora* is always present, often mixed with *Eucalyptus radiata*. *Eucalyptus rubida* is rare in Knox and only occurs in Valley Grassy Forest. *Eucalyptus goniocalyx* may be present near a transition toward Valley Heathy Forest.
- Lower trees: Not dense, but fairly rich in species: *Exocarpos cupressiformis, Acacia mearnsii, Acacia melanoxylon* and *Acacia implexa* are common.
- Shrubs: Probably once fairly sparse in Knox, but *Acacia paradoxa*, *Kunzea ericoides* and *Cassinia* species are now often dense due to soil disturbance.
- Vines: Light twiners such as *Billardiera scandens* and *Comesperma volubile* may be fairly common. More substantial climbers and usually absent or limited to occasional plants of *Clematis* species.
- Ferns: Scarce other than for patches of *Pteridium esculentum* or *Adiantum aethiopicum* where the vegetation approaches Herb-rich Foothill Forest or similar EVCs.
- Ground flora: Dense and grassy, often with many lilies. *Themeda triandra* is usually one of the most dominant grasses, along with *Microlaena stipoides, Stipa rudis* and species of *Poa* and *Danthonia. Lomandra longifolia* is also often abundant. The most abundant lilies are *Arthropodium strictum, Burchardia umbellata, Caesia parviflora* and *Dianella revoluta*. Other species that are more common in Valley Grassy Forest than similar EVCs are *Galium* species, *Ranunculus lappaceus* and *Veronica* species (although *V. gracilis* is also common in Valley Heathy Forest). In addition to the Veronicas, other creepers such as

Dichondra repens and Acaena novae-zelandiae can be quite abundant. Daisies such as Brachyscome decipiens were apparently fairly common once, but now rare.

Conservation Status: Valley Grassy Forest occurs in Knox on a ridge in Upper Ferntree Gully and in narrow bands or small sites in Rowville and Lysterfield. These sites are predominantly on the interface between the Gippsland Plain and Highlands Southern Fall bioregions recognised by the Department of Sustainability & Environment. Valley Grassy Forest is much more common north of the Maroondah Hwy. Its grassy, productive understorey has led to widespread degradation and clearing associated with grazing by stock. The conservation status is 'Vulnerable' in both bioregions, according to the department.

EVC 53 – Swamp Scrub

Swamp Scrub can occur either naturally or as regrowth following clearing of floodplain forests. It is possible that all of the occurrences in Knox are in the latter category.

- Quick recognition: A dense, tall scrub of *Melaleuca ericifolia*, sometimes punctuated with scattered *Eucalyptus ovata, E. cephalocarpa* or *Acacia melanoxylon*. The understorey is quite sparse because of the dense shade. The ground is boggy for most of the year.
- Position in the landscape: Poorly drained floodplains.

Canopy: As described above.

- Shrubs: Usually quite sparse. *Coprosma quadrifida* is fairly common, but other shrubs of similar size are uncommon. The main smaller shrubs are *Goodenia ovata* and *Senecio minimus*.
- Vines: Indigenous vines are very sparse or absent, but Japanese Honeysuckle and Blackberry often invade and become abundant.
- Ferns: Often absent, but *Blechnum minus* can be fairly abundant and *Cyathea australis* is sometimes present in small numbers.
- Ground flora: Moderately to very sparse, depending on the canopy density. The species present usually include many of the following: *Phragmites australis, Lomandra longifolia, Isolepis inundata, Lobelia anceps, Centella cordifolia* and various species of *Juncus*. Nonvascular plants may have greater cover than vascular ground flora.
- Conservation Status: Swamp Scrub occurs on various floodplains in Knox. The vast majority of native vegetation on floodplains throughout the Melbourne region has been cleared, grazed or excavated for drainage or sewerage. The pockets of Swamp Scrub are consequently only tiny compared with what would once have existed, and much of what now exists in Knox may be artificial as a result of clearing of Swampy Woodland. The Department of Sustainability & Environment rates the conservation status of Swamp Scrub as 'Endangered' in the Gippsland Plain bioregion, which includes all occurrences in Knox.

EVC 56 – Floodplain Riparian Woodland

- Quick recognition: Identifiable as a woodland of *Eucalyptus viminalis* (or in some of Victoria, *Eucalyptus camaldulensis*) that extends many tens, or even hundreds, of metres from a perennial streams. Unlike Riparian Forest (EVC 18), *Hymenanthera dentata* is abundant and *Pomaderris aspera* is scarce or absent. *Rapanea howittiana* is not always present, but it is rarely found outside this EVC. Wetlands within this EVC are usually classified as EVC 172 Floodplain Wetland Complex.
- Position in the Knox landscape: Apparently confined to the broadest areas of Dandenong Creek's floodplain. Riparian Forest occurs in narrower valleys whose floodwaters drain more rapidly.
- Tree canopy: Rather open, dominated by Eucalyptus viminalis, sometimes with Eucalyptus ovata.

- Lower trees: Acacia melanoxylon, A. dealbata and A. mearnsii are usually present, apparently not reaching as tall as in Riparian Forest. Rapanea howittiana is present south of Wellington Rd, the only locality for this species for a radius of tens of kilometres. Pomaderris aspera is scarce or absent.
- Shrubs: Hymenanthera dentata and Melaleuca ericifolia are abundant. Ozothamnus ferrugineus, Bursaria spinosa and Gynatrix pulchella may also be rather abundant. Senecio minimus is usually abundant. Only two plants of Callistemon ?sieberi occur in this EVC in Knox, but they are regarded as a characteristic species of this EVC elsewhere in the Port Phillip and Westernport region (Oates and Taranto 2001).
- Vines: Indigenous vines are sparse or absent, the most common of which is the parasite *Cassytha pubescens*. Japanese Honeysuckle and Blackberry often invade and may become abundant.
- Ferns: Often absent, but *Blechnum minus* can be fairly abundant and *Cyathea australis* is sometimes present in small numbers.
- Ground flora: Highly degraded in Knox by past agriculture, overrun by pasture grasses (e.g. *Phalaris aquatica* and *Pennisetum clandestinum*) and pastoral weeds. *Carex appressa* is abundant, and *Phragmites australis* is often so. *Lycopus australis* can be abundant, and is rare or absent from other EVCs in and around Knox.
- Conservation Status: Floodplain Riparian Woodland is regarded by the Department of Sustainability & Environment as 'Endangered' in the Gippsland Plain and Highlands Southern Fall bioregions. Perhaps the most intact example in Knox is in the Police Road Retarding Basin, where it is threatened by the proposed Mitcham to Frankston Freeway. All riparian native vegetation is very important for stream ecology and waterway protection.

EVC 74 – Wetland Formation

This EVC is best regarded as a collection of EVCs, and it applies to any freshwater water body or seasonally inundated area that has native vegetation. It includes within it Floodplain Wetland Complex (EVC 172) and Aquatic Herbland (EVC 653), each of which has been separately identified in this study where possible. Wetlands often occur within swampy or riparian EVCs (e.g. Riparian Forest or Swampy Riparian Woodland) and they can be either classified as EVC 74 or deemed part of the surrounding EVC.

Water bodies with negligible or no known vegetation are classified as EVC 998 (Water Body – natural or manmade) rather than EVC 74. Only the most barren water body fits this description, taking into account that underwater plants are usually difficult to detect. Vegetation that is submerged and invisible may be important habitat for invertebrates, fish and birds that dabble or dive. The cluster of Sutton, Cogley and Hill Lakes in Rowville provide an excellent example of this. Nevertheless, the Department of Sustainability & Environment's BioMaps of EVCs appear to ignore submerged vegetation.

- Position in the landscape: Natural and manmade occurrences are scattered fairly liberally along Knox's stream corridors, but usually modified by past grazing, drainage, changed hydrology and removal of the surrounding forest. There are also dams scattered on more elevated ground, which often become vegetated once wind and waterbirds introduce seeds and plant fragments.
- Conservation Status: The vegetation of all wetland communities (including EVCs 74, 172 and 653) is regarded by the Department of Sustainability & Environment as 'Endangered' in the Gippsland Plain and Highlands Southern Fall bioregions.

EVC 83 – Swampy Riparian Woodland

Quick recognition: Identifiable as a gallery or corridor of *Eucalyptus ovata* or sometimes *E. viminalis* within a few tens of metres of the current or former course of a perennial stream, growing in friable alluvium which is often inundated but drains freely. Unlike Riparian Forest (EVC 18), Swampy Riparian Woodland does not have abundant *Pomaderris aspera*, and unlike Shrubby Gully Forest (EVC 938), *Melaleuca squarrosa* is scarce or absent and there are at most only patches of dense scrub dominated by species of *Leptospermum, Melaleuca* and/or *Acacia* (except for a period following clearing). Treeless patches of wetland are often taken to be included within Swampy Riparian Woodland.

- Position in the landscape: In narrow bands along creeks, in the zone where inundation occurs on most of the occasions when the associated stream breaks its banks. It is the most common vegetation type on the banks of Knox's creeks, punctuated by stretches of Riparian Forest (EVC 18) or Floodplain Riparian Woodland (EVC 56). It is often flanked by Swampy Woodland (EVC 937), which (by contrast) tends to be flooded only by slow-moving water flowing downhill rather than by a stream breaking its banks. Swampy Riparian Woodland occurs in both bioregions that the Department of Sustainability & Environment recognises in Knox.
- Tree canopy: Dominated by *E. ovata* typically 15-20 m tall or (less often) *E. viminalis* > 20 m tall, sometimes mixed with *E. cephalocarpa* that are rather shorter. Mature stands are rare in Knox, and can reach over 25 m tall.
- Lower trees: Acacia melanoxylon and A. dealbata tend to dominate, sometimes with veteran Melaleuca ericifolia. Pomaderris aspera is absent or sparse.
- Tall shrubs: Typically 4-8 m tall, dominated by any combination of *Melaleuca ericifolia*, *Leptospermum scoparium* and *Ozothamnus ferrugineus*, with variable density depending on recency of clearing or floods. Visibility typically 10 m. If *Melaleuca squarrosa* occurs, Shrubby Gully Forest (EVC 938) is more likely.
- Lower shrubs: Similarly variable density. Dominants are *Coprosma quadrifida*, *Goodenia ovata* and sometimes *L. lanigerum* or *Acacia verticillata*. *Senecio minimus* is often abundant, as in the related community, Swampy Woodland (EVC 937).

Vines: Very sparse.

Ferns: Pteridium esculentum is dense in patches; Blechnum species are often scattered.

- Ground flora: Typically patchy and variously dominated by *Phragmites australis, Lomandra longifolia, Poa ensiformis* (or *P. labillardierei*), *Pteridium esculentum*, rushes or *Carex* species.
- Conservation Status: Many kilometres of creeks in Knox are lined with Swampy Riparian Woodland, but overwhelmingly the vegetation is in poor ecological condition due to insensitive land use and the vegetation's vulnerability to environmental weeds such as Japanese Honeysuckle and Wandering Jew. All riparian native vegetation is significant for its critical roles in maintaining stream ecology, bio-corridors and waterway protection through its particular characteristics of shade, flood response, nutrient cycling and use by fauna. Without taking these factors into account, the Department of Sustainability & Environment gives the conservation status of Swampy Riparian Woodland as 'Endangered' in the Gippsland Plain bioregion (which includes the majority or whole of every stream in Knox) and 'Depleted' in the 'Highlands – Southern Fall' bioregion. An unthinking application of these designations would lead to a discontinuity in the inferred conservation significance of Swampy Riparian Woodland along a stream at the point where it crosses the (somewhat arbitrary) boundary that the department has drawn between the two bioregions. This would not be sound because of the ways that a stream corridor functions ecologically. It is more ecologically defensible to treat all of the Swampy Riparian Woodland in Knox as having the 'Endangered' conservation status, even several kilometres upstream of the mapped boundary of the 'Gippsland Plain'. In addition, the conservation significance of any patch of Swampy Riparian Woodland has to take into account the environmental significance of riparian corridors, consistent with 'Victoria's Native Vegetation Management - A Framework for Action' (NRE 2002a).

EVC 127 – Valley Heathy Forest

The Department of Sustainability & Environment's BioMaps of pre-1750 EVCs indicate that Valley Heathy Forest's distribution in the Port Phillip and Westernport region was confined within an area roughly between Templestowe, Kilsyth, Ferntree Gully, Rowville and Burwood, plus minor intrusions into the sand belt to the southwest. The remnants that remain show a strong gradient of characteristics across this range, both north-south and east-west. From Templestowe to North Ringwood, it approaches Valley Grassy Forest; from Kilsyth South to Boronia it approaches Lowland Forest; in Ferntree Gully it approaches the Dandenong Ranges form of Grassy Forest; and there is a noticeably different form between Scoresby and Lysterfield. There are also marked variations at the local scale. For example, the vegetation of Stringybark Reserve in Wantirna can be regarded as falling wholly within the range of

variability of Valley Heathy Forest even though the northern half is scarcely distinguishable from Valley Grassy Forest and the southern half is quite similar to Grassy Forest.

- Quick recognition: Difficult, for the reasons above. Check the tree species and heights for conformity with the description below. *Eucalyptus cephalocarpa* and *E. goniocalyx* should be present. *Eucalyptus melliodora* and *Allocasuarina littoralis* are often present, unlike Grassy Forest and Lowland Forest. The shrub layer is usually rather dense and prickly. *Bursaria spinosa* and *Microlaena stipoides* are often abundant (typically dominant in their respective strata after grazing or clearing), and *Acacia paradoxa* has a similar tendency. *Hibbertia riparia* is common in Valley Heathy Forest, unlike similar EVCs. *Gahnia radula, Stipa rudis, Poa morrisii* and/or wallaby-grasses (particularly *Danthonia tenuior*) are typically abundant. Intact examples should have abundant lilies, particularly *Dianella revoluta, D. longifolia, Tricoryne elatior* and *Arthropodium strictum. Platylobium obtusangulum* and *Leptospermum continentale* are very common (whereas *P. formosum* and *L. scoparium* are more associated with Grassy Forest and other foothill forests). *Daviesia latifolia* and *Pterostylis nutans* are much more common than in other EVCs in the metropolitan area or the hills to the east. Members of the Protea family are usually absent and never abundant. Lowland Forest is distinguishable by its generally taller canopy (>20 m), abundant members of the Protea family and a dense, tangled ground layer that includes *Tetrarrhena juncea*.
- Position in the Knox landscape: Widespread on undulating terrain between the perennial stream valleys, but not extending up the slopes of the Dandenong Ranges.
- Tree canopy: Height varies from below 15 m in the west and south to 20 m in the east. Foliage density is typically 25% cover, with the tree crowns overlapping slightly. *Eucalyptus cephalocarpa* and *E. goniocalyx* are nearly always present. *E. melliodora* and *E. radiata* are often present. *E. obliqua* is abundant in more mesic areas. *E. macrorhyncha* can be found where Valley Heathy Forest approaches Grassy Forest or in proximity to Grassy Dry Forest. *E. rubida* is associated more with Valley Grassy Forest than Valley Heathy Forest.
- Lower trees: *Exocarpos cupressiformis* and *Acacia melanoxylon* are usually present, and often also *Acacia mearnsii*, *A. implexa* or *Allocasuarina littoralis*. Patches of *Acacia pycnantha* are common. *A. dealbata* is rarely present.
- Shrubs: There is usually a shrub layer approximately 2-3 m deep, often becoming dense in patches depending on the history of fire and other disturbance. Visibility is typically 20 m. This layer is pricklier and denser than the similar Grassy Forest and is typically dominated by *Bursaria spinosa* and sometimes *Acacia paradoxa* (particularly in areas that have been grazed or cleared). *Acacia* species tend to be more numerous than other EVCs. *Leptospermum continentale* is common, but *L. scoparium* is much less common (being more associated with foothill forests such as Grassy Forest). *Cassinia* species are common. *Cassinia arcuata and sometimes Daviesia latifolia* can be prolific following disturbance (unlike Grassy Forest). *Epacris impressa* and *Dillwynia cinerascens* are typically present in more intact areas.
- Vines: Moderately common but representing a very low foliage cover compared with the rest of the understorey. *Billardiera scandens* and *Comesperma volubile* are the most common climbers, and *Hardenbergia violacea* is the most common creeper (although *Kennedia prostrata* becomes abundant after fire). The vine component of Valley Heathy Forest is very similar to Grassy Forest.
- Ferns: *Pteridium esculentum* is often dense in patches, particularly after disturbance. Other ferns are much less common.
- Ground flora: Mostly less than knee deep and with a foliage cover usually above 80% in mature vegetation; Densely grassy, rich in species and with a minor but important component of heathy elements (e.g. *Hibbertia riparia*) that distinguish this community from Valley Grassy Forest and Grassy Forest. *Microlaena stipoides* is consistently abundant and often a dominant species, becoming very dense in areas with a history of grazing. *Gahnia radula, Stipa rudis, Poa morrisii* and/or wallaby-grasses (particularly *Danthonia tenuior*) are typically abundant and any of these can dominate the ground flora. *Themeda triandra* and/or *Joycea pallida* are often conspicuous but not as much as the other grasses just mentioned. *Tetrarrhena juncea* only occurs where the vegetation approaches Lowland Forest. As in EVCs related to Valley Heathy Forest, the following species are very common but with much less foliage cover than the

grasses: Lomandra filiformis, Gonocarpus tetragynus, Acrotriche serrulata, Hypericum gramineum, Oxalis perennans/exilis, Stylidium sp.2 and Hovea heterophylla. Xanthorrhoea minor is common in more intact areas. A high frequency of <u>Hibbertia riparia</u> is a distinctive feature of this EVC. Platylobium obtusangulum is usually present, whereas *P. formosum* is more associated with Grassy Forest and some other foothill forests. Veronica gracilis is common and tends to be replaced by *V. calycina* in Grassy Forest. Valley Heathy Forest has abundant Pterostylis nutans and lilies, particularly Dianella revoluta, D. longifolia, Tricoryne elatior, Burchardia umbellata and Arthropodium strictum (the last of which can sometimes dominate the ground flora in spring). Caesia parviflora is often present in more intact areas. Opercularia ovata tends to be more abundant than O. varia, whereas the reverse is true in Grassy Forest. Drosera whittakeri is also much more common in Valley Heathy Forest than Grassy Forest. Until the 1960s, Valley Heathy Forest was very rich in orchids (with suburbs like Bayswater and Boronia renowned for them), but broad scale environmental changes have caused a massive decline.

Conservation Status: The Department of Sustainability & Environment rates the conservation status of Valley Heathy Forest as 'Endangered' in the Highlands Southern Fall and Gippsland Plain bioregions, and throughout Victoria. Despite this, Valley Heathy Forest accounts for a large fraction of the small amount of remnant vegetation left in Knox.

EVC 128 – Grassy Forest

The Department of Sustainability & Environment's BioMaps of extant and pre-1750 EVCs have applied the title 'Grassy Forest' to two distinct kinds of vegetation that occur in Knox. One kind is the type of forest for which the title was originally coined (Commonwealth and Victorian Regional Forest Agreement Steering Committee 1997). The other is a low, open woodland that does not conform to the original description, nor to the description in the report about the BioMap project (Oates and Taranto 2001).

In this report, the term 'Grassy Forest' is used only for vegetation that is consistent with the published descriptions. The title 'EVC 128a – Bundy Woodland' is coined here for the other type of vegetation mapped as Grassy Forest on the BioMaps. The following description is for typical Grassy Forest. Bundy Woodland is described beneath that, under a separate heading.

- Quick recognition: Recognisable by a diverse eucalypt overstorey (see below), a sparse shrub layer and a rich array of ground flora in a grassy layer with plenty of space between tussocks (though less than in Grassy Dry Forest). The following are good indicator species: *Acacia stricta, Joycea pallida, Lepidosperma laterale, Pimelea humilis, Cynoglossum suaveolens, Platylobium formosum* (far more than *P. obtusangulum*) and *Plantago varia. Hibbertia riparia* and *Eucalyptus melliodora* are usually absent, unlike the related Valley Heathy Forest (EVC 127).
- Position in the Knox landscape: Gentle slopes (particularly with northerly to westerly aspect) in the lower Dandenong Ranges and the ridge of metamorphic geology that runs parallel to, and just east of, Dorset Rd.
- Tree canopy: Tall (typically 20 m) and rich with the tree crowns typically overlapping slightly. *Eucalyptus obliqua* is nearly always present, in any mixture with several (usually three) of the following: *E. radiata, E. macrorhyncha, E. goniocalyx. E. cypellocarpa* is sometimes also present in the Dandenong Ranges.
- Lower trees: *Exocarpos cupressiformis* is moderately dense and *Acacia melanoxylon* is usually present at lower density. *Acacia dealbata* may also be present. *Acacia mearnsii* and *Allocasuarina littoralis* are more associated with Valley Heathy Forest, but may appear in Grassy Forest.
- Shrubs: Mostly up to 2-3 m tall and of variable density, depending on the recent history of fire and other disturbance. A sparse cover is the most common natural state. The most common species are *Cassinia aculeata, Leptospermum scoparium, L. continentale, Bursaria spinosa, Acacia species, Correa reflexa, Pultenaea gunnii, Olearia lirata* and *Epacris impressa*. Visibility is typically 30 m, but variable.
- Vines: Moderately common but representing a very low foliage cover compared with the rest of the understorey. Frequent species are *Comesperma volubile*, *Clematis aristata*, *Pandorea pandorana*, *Glycine clandestina* and *Billardiera scandens*.

- Ferns: *Pteridium esculentum* and sometimes *Adiantum aethiopicum* are dense in patches, but the patches are sparse enough that the ferns do not normally have high foliage cover overall.
- Ground flora: Mostly less than knee deep and with a foliage cover of typically 80% in mature vegetation. Dominated in patchwise fashion by *Themeda triandra, Poa morrisii, Joycea pallida* and *Gahnia radula,* always with abundant *Lomandra filiformis* subsp. *coriacea* and often with fairly abundant *Microlaena stipoides, Stipa rudis* and *Stipa pubinodis.* There are numerous ground flora species, the most frequent being *Platylobium formosum* (creeping form), *Acrotriche* species, *Gonocarpus tetragynus, Goodenia lanata, Helichrysum scorpioides, Arthropodium strictum, Lepidosperma gunnii, L. laterale, Pimelea humilis* and *Dipodium roseum.* Orchids and lilies are usually rather abundant in healthy areas of Grassy Forest, particularly after fire or with light grazing or slashing. *Thysanotus tuberosus* and *Wahlenbergia stricta* are often present (sometimes in abundance), unlike the similar Valley Heathy Forest (EVC 127).
- **Conservation Status:** The Department of Sustainability & Environment rates the conservation status of Grassy Forest as 'Vulnerable' in the Highlands Southern Fall bioregion and 'Endangered' in the Gippsland Plain bioregion. Most of the Grassy Forest in Knox is in the former bioregion, adjoining larger, more intact areas on the lower slopes of the Dandenong Ranges National Park. Vegetation that is intermediate between Grassy Forest and Valley Heathy Forest occurs between Army Rd and Dorset Rd in Boronia, which is in the Gippsland Plain bioregion.

EVC 128a – Bundy Woodland

As explained above, Bundy Woodland is the name coined here for a vegetation community that has been mapped on the Department of Sustainability & Environment's BioMaps as Grassy Forest (EVC 128), but does not conform to published descriptions of this EVC. It conforms to the department's interim 'benchmark' for Grassy Forest in the Gippsland Plain bioregion, but not for the Highlands Southern Fall bioregion.

Typical Grassy Forest has a canopy comprising slightly overlapping crowns of eucalypts of several species reaching approximately 20 m tall. By contrast, Bundy Woodland supports a near-pure stand of stunted *Eucalyptus goniocalyx* to 15 m tall, which are mostly well separated. The understorey of typical Grassy Forest is also richer in species than Bundy Woodland.

- Quick recognition: Recognisable as a sparse, near-pure stand of Bundy with crowns well separated. The shrub layer is rather sparse except for disturbed patches, and there is a densely grassy layer with low or modest richness of species. Similar EVCs are Grassy Forest (EVC 128), Grassy Dry Forest (EVC 22) and Valley Heathy Forest (EVC 127).
- Position in the Knox landscape: Knolls and hillsides in rather steep, often rocky terrain of foothills to the Dandenong Ranges, at Sugarloaf Hill in Boronia and Lysterfield Park.
- Tree canopy: A practically pure stand of well-spaced *E. goniocalyx* to 15 m tall.
- Lower trees: *Exocarpos cupressiformis* may be moderately dense. *Acacia mearnsii* and/or *A. implexa* may be present in smaller numbers and may reach as tall as the eucalypt canopy.
- Shrubs: Mostly up to 2-3 m tall and sparse except where stimulated by soil disturbance. The most common species are *Bursaria spinosa, Cassinia aculeata, Leptospermum scoparium, L. continentale, Acacia* species and *Epacris impressa*. Visibility is typically 30-50 m, but variable according to disturbance history.
- Vines: Moderately common but representing a very low foliage cover compared with the rest of the understorey. Frequent species are *Billardiera scandens*, *Glycine clandestina* and *Pandorea pandorana*.
- Ferns: Usually scarce and rarely including any *Pteridium esculentum* (unlike typical Grassy Forest). *Adiantum aethiopicum* can be dense in patches around rocks, but with low overall foliage cover.
- Ground flora: Mostly less than knee deep and with a foliage cover usually above 90%. Less disturbed ground flora are dominated in patchwise fashion by *Themeda triandra, Stipa rudis, Lomandra filiformis* subsp. *coriacea* and sometimes *Goodenia lanata*, but *Microlaena* can dominate following grazing. *Joycea pallida* and *Gahnia radula* are scarce or absent, unlike typical Grassy Forest. Other ground flora species are similar

to Grassy Forest (EVC 128), Grassy Dry Forest (EVC 22) and Valley Heathy Forest (EVC 127), but with fewer species.

Conservation Status: For the purpose of applying "*Victoria's Native Vegetation Management – A Framework for Action*" (NRE 2002a), Bundy Woodland should be treated as part of EVC 128 to avoid inconsistency with the research and classifications that underpin the Framework. The Department of Sustainability & Environment rates the conservation status of Grassy Forest as 'Vulnerable' in the Highlands Southern Fall bioregion and 'Endangered' in the Gippsland Plain bioregion. The 'benchmark' for Grassy Forest on the Gippsland Plain is a satisfactory match, but the one for Highlands Southern Fall is not a reasonable match and it should not be used for Bundy Woodland.

EVC 164 – Creekline Herb-rich Woodland

This EVC may or may not be present in Knox, and if so, only at the Lysterfield Hills Quarries. The Department of Sustainability & Environment's BioMap of pre-1750 EVCs show it as having occurred on the Dobson Creek floodplain in The Basin and on the headwaters of two creeks in the Lysterfield Hills. This is not consistent with the corresponding BioMap of extant EVCs, and the purported pre-1750 occurrence at The Basin is also inconsistent with the geographical context of this EVC (as presently interpreted by the Department of Sustainability & Environment).

An occurrence on the southern slopes of the Lysterfield Hills has been reported by Mr S. Mueck in a 1998 report, '*Ecological Assessment of Native Vegetation Adjacent to a Proposed Extension of the Lysterfield Quarry*'. This conflicts with all other EVC maps of the area. It would also be geographically out of character and the species list that Mueck provides seems more consistent with Herb-rich Foothill Forest (EVC 23).

The purported occurrences on the Lysterfield Hills could not be checked during this study because access to the quarry land could not be arranged.

The following description is based on typical occurrences north of Knox.

- Quick recognition: Always found in narrow strips of alluvium along minor drainage lines. There is a welldeveloped stratum of *Acacia mearnsii* and *A. melanoxylon* beneath the eucalypts. Look for the ground flora species *Poa labillardierei*, *P. tenera*, *Gahnia radula*, *Juncus* species, *Lomandra longifolia*, *Lobelia anceps*, *Centella cordifolia*, *Acaena novae-zelandiae*, *Adiantum aethiopicum*. *Veronica plebeia* and *Gratiola peruviana* are good indicators, but not always present. Distinguish from Herb-rich Foothill Forest (EVC 23) by the presence of alluvium and ground flora species that indicate poor drainage (e.g. *Centella* or *Goodenia elongata*).
- Position in the landscape: Always found in narrow strips of alluvium along minor drainage lines (usually with a non-perennial creek flowing through them), usually flanked by Valley Grassy Forest (EVC 47) or Herb-rich Foothill Forest (EVC 23) on more protected slopes (sometimes by Grassy Dry Forest (EVC 22) on exposed, north-facing slopes).
- Tree canopy: Similar in composition to the flanking vegetation, but typically taller and with the addition of *Eucalyptus ovata* and/or *E. rubida*. Variable in height but typically about 20 m.
- Lower trees: There is a well-developed stratum of *Acacia mearnsii* and *A. melanoxylon* (or occasionally *Acacia dealbata*).
- Shrubs: Often patchy, typically about 3 m tall. *Kunzea eriocoides* may be abundant, depending on the site's history. *Leptospermum scoparium* and *Bursaria spinosa* are very common. Visibility is typically 20 m, but variable.
- Vines: Fairly scarce. *Glycine* species are most common.
- Ferns: Adiantum aethiopicum is usually present and patches of Pteridium esculentum can be present.
- Ground flora: Grassy and with many herb species. Dominant species comprise a selection from Poa labillardierei, P. tenera, Gahnia radula, Juncus species and Lomandra longifolia. Characteristic forb

species are Lobelia anceps, Centella cordifolia, Acaena novae-zelandiae, Veronica plebeia, Goodenia elongata and Gratiola peruviana.

Conservation Status: The Department of Sustainability & Environment rates the conservation status of Creekline Herb-rich Woodland as 'Endangered' in the Highlands Southern Fall and Gippsland Plain bioregions. If present at all in Knox, it is extremely rare, highly endangered and probably badly degraded.

EVC 172 – Floodplain Wetland Complex

- Quick recognition: Seasonal or perennial wetlands on floodplains of the more major streams, with <u>floating</u> <u>aquatic</u> plants and fringed by the genera *Alisma*, *Juncus*, *Carex*, *Typha* and *Persicaria*. Aquatic Herbland (EVC 653) appears to be a narrower type of vegetation that lies within EVC 172, except that the former is not (arbitrarily?) confined to broad floodplains of larger streams.
- Position in the Knox landscape: Billabongs, cut-off meanders and depressions on the floodplains of Dandenong Ck, Blind Ck and Corhanwarrabul Ck, particularly in association with Floodplain Riparian Woodland.
- Trees, vines, terrestrial ferns: None, although Eucalyptus viminalis is normally close by or overhanging.

Shrubs: Melaleuca ericifolia may occur at the water's edge.

- Fringing plants: Members of the genera Alisma, Juncus, Carex, Eleocharis, Typha and Persicaria are abundant. Crassula helmsii and Alternanthera denticulata are often present
- Aquatic plants: *Potamogeton* species, *Triglochin procerum* and *Lemna disperma* are generally present. *Ottelia ovalifolia* and *Azolla filiculoides* are fairly common. *Spirodella punctata* and *Wolffia australiana* are sometimes present.
- Conservation Status: The vegetation of all wetland communities (including EVCs 74, 172 and 653) is regarded by the Department of Sustainability & Environment as 'Endangered' in the Gippsland Plain and Highlands Southern Fall bioregions.

EVC 653 – Aquatic Herbland

Based on currently available descriptions and mapping by the Department of Sustainability & Environment, the only things that make Aquatic Herbland different from Floodplain Wetland Complex (EVC 172) are that water in the wetland must be permanent or semi-permanent and the location need not necessarily be on the floodplain of a larger stream. These distinctions make no material difference in ecological terms in the urban environment where stream flows and flooding are regulated and quite different from natural.

- Position in the Knox landscape: This EVC appears on the Department of Sustainability & Environment's BioMaps at one location only in Knox the lake at Lakewood Nature Reserve. It is on a minor creek, but it otherwise fits the description of Floodplain Wetland Complex.
- **Conservation Status**: The vegetation of all wetland communities (including EVCs 74, 172 and 653) is regarded by the Department of Sustainability & Environment as 'Endangered' in the Gippsland Plain and Highlands Southern Fall bioregions.

EVC 937 – Swampy Woodland

- Quick recognition: Identifiable as a poorly drained slope or floodplain dominated by *Eucalyptus ovata*, with abundant soil moisture most of the year due to percolation of water from uphill (rather than due to proximity to a stream).
- Position in the landscape: As above, in major and minor valleys right across Knox and occasionally on hillsides where soil is kept damp by water seepage or surface runoff. See also the comments about the closely related Swampy Riparian Woodland (EVC 83).

- Tree canopy: Similar to Swampy Riparian Woodland: Dominated by *E. ovata* typically 15-20 m tall, often mixed with *E. cephalocarpa* that are rather shorter. Mature stands are rare in Knox, and can reach over 25 m tall.
- Lower trees: Acacia melanoxylon is practically always present, often with Exocarpos cupressiformis and/or Melaleuca ericifolia. The Melaleuca may form dense patches, either as a tree layer when mature or as scrub when young.
- Shrubs: There is usually a shrub stratum 3-5 m tall that can become fairly dense at the 'adolescence' stage of the vegetation's development. Visibility is typically 10 m but variable. Dominants are *Leptospermum scoparium, Ozothamnus ferrugineus, Acacia verticillata* and sometimes *Hakea nodosa* or *Cassinia aculeata*. *Epacris impressa* is usually present, depending on the history of disturbance.
- Vines: Sometimes fairly common but representing a very low foliage cover compared with the rest of the understorey. Frequent species are *Glycine clandestina* and *Billardiera scandens*.
- Ferns: Pteridium esculentum may be dense in patches.
- Ground flora: Dense and up to about one metre deep, sometimes becoming difficult to walk through, but with enough openings between the larger tussocks to support a fairly rich range of damp-loving small herbs. Dominant species can include various mixtures of *Lomandra longifolia*, *Juncus* species, *Gahnia* species, *Poa labillardierei*, *P. ensiformis* and *Microlaena stipoides*. Smaller herbs that are typically present in more intact areas include *Centella cordifolia*, *Goodenia humilis*, *Lepidosperma filiforme* and *Patersonia* species. *Austrofestuca hookeriana* is often present in the most intact sites but not often in large numbers.
- **Conservation Status:** The Department of Sustainability & Environment rates the conservation status of Swampy Woodland as 'Vulnerable' in the Highlands Southern Fall bioregion and 'Endangered' in the Gippsland Plain bioregion. Remnants of Swampy Woodland are fairly common along the valleys of Knox in both these bioregions, but overwhelmingly in poor ecological condition.

EVC 938 – Shrubby Gully Forest

Shrubby Gully Forest corresponds to the floristic communities 'SL11' of Gullan *et al.* (1979) and 'Sub-community 3.3' of Opie *et al.* (1984).

- Quick recognition: Found in swampy places. *Eucalyptus ovata* dominates, sometimes with *E. cephalocarpa* or outlying eucalypts from adjacent communities. There is a tall, usually dense, shrub layer. *Melaleuca squarrosa* is practically always present, usually in some mixture with *Leptospermum scoparium, Ozothamnus ferrugineus* and/or *M. ericifolia*. The ground layer is often over a metre deep and hard to walk through, with abundant sedges, rushes, ferns and *Lobelia anceps*.
- Position in the landscape: Found around the fringe of the Dandenong Ranges where the slope becomes shallow, along slowly flowing creeks and drainage lines or lower slopes with plenty of groundwater seepage. Soil is sandy or silty alluvium derived from granodiorite, rhyodacite or related rock. Particularly swampy patches within this vegetation class lose their tree cover and become a wetland or swamp dominated by sedges. Shrubby Gully Forest is in less fertile catchments than the related Swampy Riparian Forest (EVC 83) and, by contrast, is often flanked by Lowland Forest (EVC 16) or Damp Heathy Woodland (EVC 793) rather than Swampy Woodland (EVC 937).
- Tree canopy: Dominated by *Eucalyptus ovata*, sometimes with some *E. cephalocarpa* or other eucalypts intruding from adjacent vegetation.
- Lower trees: Acacia melanoxylon, sometimes very sparse.
- Shrubs: A variable (but typically high) density of *Melaleuca squarrosa, Leptospermum scoparium*^{*} and *Ozothamnus ferrugineus* in any proportions are the dominant taller shrubs, often with *Leptospermum*

^{*} Note that Oates and Taranto (2001) mention *L. continentale*, which should be taken to embrace *L. scoparium* according to current taxonomic convention as given in Walsh & Entwisle (1996).

lanigerum and sometimes *Melaleuca ericifolia*. *Melaleuca squarrosa* is a particularly good indicator species. *Acacia verticillata, Coprosma quadrifida, Hakea nodosa* and *Olearia lirata* are usually present and can become abundant where taller plants admit more sunlight. *Goodenia ovata* and *Senecio minimus* are usually present, becoming abundant after disturbance.

- Ground flora: Typically dense and over one metre deep. Where enough light penetrates, the ground flora is dense with sedges, particularly *Lepidosperma elatius*, *Carex appressa*, *C. gaudichaudiana*, *Baumea* species and sometimes *Gahnia* species. Rushes (*Juncus* and *Typha* species) or *Phragmites australis* may also be dominant in more open patches. *Lobelia anceps, Poa tenera, Gonocarpus* species and *Isolepis* are common but not dominant in projected foliage cover. *Blechnum* species are common, as is *Cyathea australis*.
- **Conservation Status**: The Department of Sustainability & Environment rates the conservation status of Shrubby Gully Forest as 'Vulnerable' in the Highlands Southern Fall bioregion, which covers all known and purported occurrences of this EVC in Knox.

998 - Water Body, natural or man-made

'998' is a 'map unit number' (rather than EVC number) assigned to water bodies with no or negligible vegetation in them. Most water bodies have some vegetation, even though it may be hidden underwater (see EVC 74).

Conservation Status: The Department of Sustainability & Environment Native Vegetation Framework does not assign any conservation status rating to water bodies that are essentially unvegetated. The biological significance of any such water body depends on the support that it provides to wildlife or the indirect benefits that it may provide to indigenous flora or fauna, e.g. by discharge or percolation of water to habitat next to it or downhill.

Sedge Swamp (related to EVC 136 - Sedge Wetland)

EVC 136 – 'Sedge Wetland' – as described by Oates and Taranto (2001) is a community of the coastal sandbelt, dominated by the large sedge *Lepidosperma longitudinale* (Pithy Sword-sedge). By comparison, the Sedge Swamp described here has a different (but very similar) dominant species, *Lepidosperma elatius*, while the structure, ecology and many of the plant genera are common to both communities. One could conceivably apply the label EVC 136 to sedge swamp in Knox on the basis that EVCs were intended to group vegetation according to ecology and functional groups of plants rather than the particular species present. However, EVCs have tended to become subdivided more finely than that, and EVC expert, Mr Doug Frood, advises that it is best to treat the sedge swamp described here as a community for which the EVC system is presently deficient.

In Volume 2, areas of Sedge Swamp have been included either under EVC 74 (Wetland Formation) or as part of the surrounding EVC (e.g. Swampy Woodland).

Quick recognition: A swamp with few or no trees, overwhelmingly dominated by sedges at least 11/2 m tall.

- Position in the landscape: Found in shallow billabongs, cut-off meanders or on creeks where the riparian zone broadens and drainage is slow, including around the Dandenong Ranges and along Dandenong Ck and the Yarra River. Soil is silty or sandy alluvium and incorporates swamp deposits.
- Trees: Usually treeless but often with some overhanging branches, particularly of *Eucalyptus ovata*, *E. viminalis* subsp. *viminalis* or (less commonly) *E. cephalocarpa*.
- Shrubs: There are usually some shrubs at the edges of the swamp: *Leptospermum lanigerum* and *Melaleuca* species are frequent and sometimes there is *Ozothamnus ferrugineus*, *Leptospermum scoparium* or *Gynatrix pulchella* (Hemp Bush).
- Ground flora: Dense with tall sedge species, overwhelmingly dominated by *Lepidosperma elatius*, *Cyperus lucidus* and/or *Carex fascicularis*. *Carex appressa* and *Baumea* species are also typically present. *Persicaria* species are common. The dominance of the large sedges keeps flora diversity low.

Conservation Status: There is too little bioregional data about this EVC to classify its status.

Appendix B – Indigenous Plant Species of Knox

The table below is an inventory of indigenous plant species in Knox.

Species with an asterisk (*) before their names were not seen by Dr Lorimer, but he accepts these records of other observers as plausible. Species preceded by an obelisk (†) are in a similar category, except that Dr Lorimer has also seen these species within several hundred metres of Knox in habitat similar to somewhere in Knox. All other species have been seen and confirmed by Dr Lorimer, in nearly all cases during 2002-2004, and since 1997 in every case. Several unlisted species are suspected to exist in Knox but have not been confirmed.

Wherever possible, scientific and common names of plants in this report follow '*Flora of Victoria*'. Where '*Flora of* Victoria' has not published a common name, we default to Beauglehole (1983) and then to the names used by the Arthur Rylah Institute.

The column headed 'No. of Sites' indicates the number of sites in which the species have been reliably recorded within the past decade. The next column shows how many of these sites are reserves that are managed to conserve native flora (at least in part). It is hard to decide whether some sites qualify as reserves, e.g. because flora management may be currently good but subject to reversal, as in the case of a signposted and managed 'significant roadside' that may be subject to future road widening.

The entries in the 'Conservation Status' columns refer to the species' status as rare or threatened at various spatial scales. The subheading 'PPW' is an abbreviation for the Port Phillip and Westernport region and 'Melb' is for the region covered by the standard text, '*Flora of Melbourne*'. The letters in the columns beneath the subheadings have the following meanings, with more detailed definitions given in Section 3.4.1:

- X Presumed extinct within the corresponding area
- C Critically Endangered
- E Endangered
- V Vulnerable
- R Rare but not in any of the categories above
- K Suspected to be rare or threatened, but with too little information to tell
- S Secure but not abundant and common
- L Least Concern Abundant and common
- M Recorded by Flora of Melbourne at no more than ten sites, excluding very old records

Specimens of nearly all unusual plant species found in this study have been collected and will be lodged at the National Herbarium of Victoria as permanent records. Species that are poorly understood by science are discussed below the table.

	0 N	No.	No. of	(Conse	rvation	Statu	5	Comments or				
Scientific Name	Common Marile	Common Name	Common Name	Common Name	Common Mallie	of Sites	Res- erves	Knox	Melb	PPW	State	Nati- onal	source of record
Acacia acinacea	Gold-dust Wattle	1	1	E									
Acacia aculeatissima	Thin-leaf Wattle	8	6	V									
Acacia dealbata	Silver Wattle	30	17	S									
Acacia genistifolia	Spreading Wattle	2	1	С									
Acacia implexa	Lightwood	18	5	S									
Acacia leprosa (Dandenong Dandenong Rang	Range variant) ges Cinnamon Wattle	11	8	S			R		Locally common – see note at end of table				
Acacia leprosa × paradoxa	a hybrid wattle	0	0	R	М								
Acacia mearnsii	Black Wattle	63	31	L									
Acacia melanoxylon	Blackwood	95	41	L									
Acacia mucronata	Narrow-leaf Wattle	3	1	V									
Acacia myrtifolia	Myrtle Wattle	18	9	S									
Acacia paradoxa	Hedge Wattle	45	20	L									
Acacia pycnantha	Golden Wattle	20	8	S									
Acacia stricta	Hop Wattle	31	12	S									
*Acacia ulicifolia	Juniper Wattle	0	0	С	М				Paget 1985; FNCV 1907				
Acacia verticillata	Prickly Moses	30	14	S									
Acaena echinata group	Sheep's Burr	22	7	S					See the note at end of table				
Acæna novæ-zelandiæ	Bidgee-widgee	52	22	S									
<i>†Acianthus caudatus</i>	Mayfly Orchid	0	0	X	М				1928 FNCV report				

		No.	No.	(Conse	rvation	Statu	5	
Scientific Name	Common Name	of Sites	of Res-	Knox		PPW	State	Nati-	Comments or source of record
		Sites	erves	Knox	Melb	PPW	State	onal	
<i>†Acianthus pusillus</i>	Small Mosquito Orchid	0	0	Х					Flora of Melbourne
Acrotriche prostrata	Trailing Ground-berry	18	8	S					
Acrotriche serrulata	Honey-pots	36	18	L					
Adiantum æthiopicum	Common Maidenhair	18	11	S					
Agrostis aemula	Purplish Blown Grass	5	2	V					
Agrostis avenacea	Common Blown Grass	37	17	Ĺ					
Alisma plantago-aquatico		20	13	S					
Allocasuarina littoralis	Black Sheoak	31	13	S					
Allocasuarina paludosa	Scrub Sheoak	2	1	V X	M				1029 ENCV reserve
<i>†Almaleea subumbellata</i> <i>Alternanthera denticulata</i>	Wiry Bush-pea	0 16	0 11	A S	M				1928 FNCV report
Amphibromus archeri	a Lesser Joyweed	10	11	3					
	d Swamp Wallaby-grass	1	0	C	M				
Amphibromus nervosus	a Swamp wanaby-grass								
	d Swamp Wallaby-grass	1	0	C	M				
Amyema pendulum	Drooping Mistletoe	43	19	S					
Amyema quandang	Grey Mistletoe	16	7	S					
Aphelia pumilio	Dwarf Aphelia	1	1	С	М				
Arachnorchis – see Calad	-								
Arthropodium milleflorur		3	2	С					
Arthropodium strictum	Chocolate Lily	41	21	L					
Asperula conferta	Common Woodruff	6	3	V					
†Asplenium flabellifoliun	n Necklace Fern	1	0	С					1903 FNCV report; Pioneer Quarry report 1998
*Astroloma humifusum	Cranberry Heath	0	0	E					Adams & Simmons (1989)
Australina pusilla	Shade Nettle	1	1	E	M				
Austrocynoglossum latifo		4	1	v	М				
	Forest Hound's-tongue	· ·	-						
Austrodanthonia – see De				~					
Austrofestuca hookeriand	a Hooker Fescue	3	2	C	M				
Austrostipa – see Stipa	D (C A 11	1	1						
Azolla filiculoides	Pacific Azolla	1 3	1	V	м				
Azolla pinnata Banksia mansinata	Ferny Azolla Silver Banksia	5	3	E V	M				
Banksia marginata Baumea acuta	Pale Twig-rush	$\frac{3}{2}$	2	V C	M				
Baumea arthrophylla	Fine Twig-rush	1	0	C	M				
Baumea rubiginosa	Soft Twig-rush	2	2	C	M				
Baumea tetragona	Square Twig-rush	1	1	C	M				
Bedfordia arborescens	Blanket-leaf	3	2	E	M				
Billardiera scandens	Common Apple-berry	61	30	L					
Blechnum cartilagineum	Gristle Fern	6	3	V					
Blechnum minus	Soft Water-fern	5	2	V	М				
Blechnum nudum	Fishbone Water-fern	1	0	V	М				
Bolboschoenus medianus	Marsh Club-rush	1	1	V	М				Possibly planted
Bossiæa prostrata	Creeping Bossiæa	33	15	S					
Brachyscome cardiocarp		4	3	V	Μ				
*Brachyscome decipiens	Field Daisy	0	0	C	M	V			1936 FNCV report
Brunonia australis	Blue Pincushion	13	7	S					
Bulbine bulbosa	Yellow Bulbine-lily	2	0	C					
Burchardia umbellata	Milkmaids	31	18	S					
Bursaria spinosa	Sweet Bursaria	81	38	L					Adams & Simmons (1989);
*Caesia calliantha	Blue Grass-lily	0	0	C					1936 FNCV report
Caesia parviflora	Pale Grass-lily	19	14	S					
*Caladenia cardiochila	Heart-lip Spider-orchid	0	0	X		X			1909 FNCV report
Caladenia carnea	Pink Fingers	2	0	E	1.6				
Caladenia catenata	White Caladenia	1	0	C	M				

		No.	No.	(Conse	rvation	Statu	S	Commonto or
Scientific Name	Common Name	of Sites	of Res- erves	Knox	Melb	PPW	State	Nati- onal	Comments or source of record
*Caladenia clavigera	Plain-lip Spider-orchid	0	0	X	М				1926 specimen; John Jeanes c. 1990 (Roselyn Cres Res.)
†Caladenia congesta	Black-tongue Caladenia	0	0	Е	М				1929 FNCV report
*Caladenia deformis	Bluebeard Caladenia	0	0	Х	М				Flora of Melbourne
*Caladenia iridescens	Bronze Caladenia	0	0	E	Μ				Flora of Melbourne
*Caladenia oenochila W		0	0	E	М		V	K	3 FNCV reports, 1909-29
†Caladenia ?phaeoclavia		0	0	Е					1929 FNCV report
	n-clubbed Spider-orchid								-
*Caladenia praecox	Early Caladenia	0	0	X	M				1928 FNCV report
Callistemon ?sieberi	River Bottlebrush	1	0	C					Possibly planted
*Callitriche muelleri	Round Water Starwort	0	0	C					Pioneer Quarry report 1998
*Calochilus campestris	Copper Beard-orchid	0	0	X	M				Flora of Melbourne
<i>†Calochilus paludosus</i>	Red Beard-orchid	0	0	C	M				recorded by Paget in 1985
Calochilus robertsonii	Purplish Beard-orchid	1	0	C					
Calochlaena dubia	Common Ground-fern	10	5	S					
Calystegia marginata	Forest Bindweed	7	3	V	M				
Calystegia sepium	Large Bindweed	2	1	C					See note at end of table
Carex appressa	Tall Sedge	25	14	L					
Carex breviculmis	Short-stem Sedge	40	22	L	14				
Carex fascicularis	Tassel Sedge	9	6	R	M				
Carex gaudichaudiana	Fen Sedge	9	4	V	M				
Carex inversa	Knob Sedge Common Cassinia	8 45	2 26	S L					
Cassinia aculeata		45	26	L L					
Cassinia arcuata	Drooping Cassinia	15	23	S L					
Cassinia longifolia Cassinia trinerva	Shiny Cassinia Three-nerved Cassinia	15	1	C S	М				
Cassinia irinerva Cassytha melantha	Coarse Dodder-laurel	14	3	S	IVI				
Cassytha metanina Cassytha pubescens	Downy Dodder-laurel	14	8	S					
Cassyina pubescens Centella cordifolia	Centella	36	18	S					
Centipeda elatinoides	Elatine Sneezeweed	1	1	C	М				
Centrolepis strigosa	Hairy Centrolepis	3	2	C	101				
Chamaescilla corymbosa		2	1	E					
Cheilanthes austrotenuife		2	0	C					
Cheilanthes sieberi	Narrow Rock Fern	1	0	C	М				
Chiloglottis reflexa	Autumn Bird-orchid	1	1	C	M				
Chiloglottis valida	Common Bird-orchid	6	3	Е					
Chrysocephalum semipap			0	0					
5 1 11	Clustered Everlasting	1	0	C	M				
Clematis aristata	Mountain Clematis	22	12	S					
Clematis microphylla	Small-leafed Clematis	5	2	E					
Comesperma ericinum	Heath Milkwort	1	0	С	М				
Comesperma volubile	Love Creeper	15	8	S					
Coprosma hirtella	Rough Coprosma	2	1	V	М				
Coprosma quadrifida	Prickly Currant-bush	48	25	L					
Correa reflexa	Common Correa	10	7	V					
†Corybas incurvus	Slaty Helmet-orchid	0	0	X					Flora of Melbourne
Cotula australis	Common Cotula	4	3	V					Not uncommon in lawns
Craspedia variabilis	Variable Billy-buttons	1	1	C					
Crassula decumbens	Spreading Crassula	7	4	R					
Crassula helmsii	Swamp Crassula	8	6	V					
Crassula sieberiana	Sieber Crassula	3	1	E					
Cryptostylis leptochila	Small Tongue-orchid	4	2	V	M				
Cryptostylis subulata	Large Tongue-orchid	3	1	E					
Cyathea australis	Rough Tree-fern	18	11	S					
Cymbonotus preissianus	Austral Bear's-ear	2	0	C					
Cynoglossum suaveolens		8	4	V	17				
Cyperus ?gunnii	Flecked Flat-sedge	0	0	C	M				
Cyperus lucidus	Leafy Flat-sedge	1	0	E	Μ				

		No.	No.	(Conse	rvation	Status	5	
Scientific Name Con	nmon Name	of Sites	of Res-	Knox	Melb	PPW	State	Nati- onal	Comments or source of record
Dendenia econitara Common V	Vallahy anag	1	erves	Б				onai	
Danthonia caespitosa Common V Danthonia duttoniana Brown-back	Wallaby-grass	$\frac{1}{1}$	0	E E	M				
	Wallaby-grass	2	0	E	1V1				
	Wallaby-grass	11	5	V					
-	Wallaby-grass	24	13	S					
	Wallaby-grass	28	13	S					
<i>"</i>	Wallaby-grass	60	27	L					
-	Wallaby-grass	17	9	S					
-	Wallaby-grass	54	19	L					
Danthonia semiannularis		23	13	S					
Tasmanian V	Wallaby-grass	23	15	3					
-	Wallaby-grass	47	23	L					
Danthonia tenuior Purplish V	Wallaby-grass	40	16	S					
*Daucus glochidiatus A	Austral Carrot	0	0	С					Adams & Simmons (1989), perhaps dubious
	lop Bitter-pea	20	8	S					
	eaf Bitter-pea	8	2	V					
	ent Speedwell	1	1	C	Μ				
8	n Tick-trefoil	5	1	V					
	th Bent-grass	1	1	С	M				
	ed Bent-grass	48	29	L					
	an Bent-grass	1	0	C	M		-	9	
	atted Flax-lily	2	1	C	M		E	C	
	Pale Flax-lily	44	21	S L					
	ther Flax-lily man Flax-lily	69 16	31 10	L S					
	r Plume-grass	2	0	C S					
	n Plume-grass	20	11	S					See note at end of table
Dichelachne sieberiana	Plume-grass	20	0	C					See note at end of table
	Kidney-weed	51	22	L					
•	Soft Tree-fern	2	2	E	М				
	ey Parrot-pea	33	17	S					
-	acinth Orchid	14	6	S					
Diuris chryseopsis C	Golden Moths	2	2	С	М				
Diuris corymbosa Wallf	lower Orchid	2	1	С					
-	opard Orchid	0	0	E					3 FNCV reports, 1907-1936
†Diuris sulphurea	Tiger Orchid	0	0	E					Flora of Melbourne
Drosera peltata subsp. auriculata	Tall Sundew	27	19	S					
Drosera peltata subsp. peltata	Pale Sundew	11	7	V					
	Tiny Sundew	1	1	E	M				
	ented Sundew	15	8	S	0	17			
Dysphania glomulifera	Pigweed	1	1	C	C	V			
<i>Echinopogon ovatus</i> Common He <i>Elatine gratioloides</i>	dgehog-grass Waterwort	2	0	E C	M				
	on Spike-rush	15	6	S	11/1				
	er Spike-rush	3	0	V	М				
-	all Spike-rush	11	6	S	141				
	Wheat-grass	19	6	S					
	ng Rope-rush	3	2	V					
	Ace of Spades	0	0	X	М				FNCV reports, 1907 & 1928
	ommon Heath	43	25	S					
Epilobium billardierianum subsp. ci		8	2	S					
	Willow-herb	30	10	S					
Epilobium ?pallidiflorum Showy	Willow-herb	1	1	С	С				ID to be confirmed when flowering
-	on Love-grass	33	21	S					
*Eriochilus cucullatus Pa	arson's Bands	0	0	C					Paget, 1985

		No.	No.	(Conse	rvation	Status	S	Commonto or
Scientific Name	Common Name	of	of					Nati-	Comments or source of record
		Sites	Res- erves	Knox	Melb	PPW	State	onal	source of record
†Eryngium vesiculosum	Prickfoot	1	0	С					
Eucalyptus camaldulensis	River Red Gum	1	0	V					
Eucalyptus cephalocarpa	Silver-leaf Stringybark	80	37	L					
Eucalyptus cypellocarpa	Mountain Grey Gum	8	5	S					
*Eucalyptus fulgens	Green Scentbark	1	0	Е	М		V		L. Smith, 2003
Eucalyptus goniocalyx	Bundy, Long-leaf Box	73	29	L					
Eucalyptus macrorhyncha	Red Stringybark	39	15	S					
Eucalyptus melliodora	Yellow Box	42	14	S					
Eucalyptus obliqua	Messmate Stringybark	53	29	L					
Eucalyptus ovata	Swamp Gum	61	25	L					
Eucalyptus polyanthemos	Red Box	1	1	V					
Eucalyptus radiata	Narrow-leaf Peppermint	90	40	L					
Eucalyptus rubida	Candlebark	4	3	V					
Eucalyptus viminalis	Manna Gum	23	15	S					
Eucalyptus yarraensis	Yarra Gum	4	1	С	М		K	R	
Euchiton gymnocephalus	Creeping Cudweed	20	9	S					
Euchiton involucratus	Common Cudweed	20	11	S					
Euchiton sphaericus	Star Cudweed	1	1	Е					
*Euphrasia collina	Purple Eyebright	0	0	Х					3 FNCV reports, 1918-36
Exocarpos cupressiformis		89	37	L					
Exocarpos strictus	Pale-fruit Ballart	11	5	S					
Gahnia radula	Thatch Saw-sedge	73	33	L					
Gahnia sieberiana	Red-fruit Saw-sedge	10	6	R					
Galium gaudichaudii	Rough Bedstraw	7	3	R					
Galium propinquum	Maori Bedstraw	2	0	V					
Gastrodia sesamoides	Cinnamon Bells	5	3	V					
*Genoplesium archeri	Variable Midge-orchid	0	0	Х					Flora of Melbourne
*Genoplesium despectans	-	1	0	С	М			K	Braine 1946; Paget 1985; J&J Jeanes c.1995
Geranium potentilloides	Cinquefoil Cranesbill	10	5	S					
Geranium sp. 2	Variable Cranesbill	6	2	V					
Geranium sp. 4	Rough Cranesbill	4	3	V	М				
Geranium sp. 5	Naked Cranesbill	1	0	Е					
Glossodia major	Wax-lip Orchid	1	0	С					
Glossostigma cleistanthur		1	1	Е	Е		R		Prior to 2004, not recorded within 200 km
Glyceria australis	Australian Sweet-grass	7	4	V					
Glycine clandestina	Twining Glycine	14	7	S					
Glycine microphylla	Small-leaf Glycine	1	1	Е	Μ				
Gonocarpus humilis	Shade Raspwort	5	0	V					
Gonocarpus micranthus	Creeping Raspwort	3	3	V					
Gonocarpus tetragynus	Common Raspwort	66	35	L					
Goodenia elongata	Lanky Goodenia	4	4	V	М				
Goodenia humilis	Swamp Goodenia	6	4	R					
Goodenia lanata	Trailing Goodenia	20	13	S					
Goodenia ovata	Hop Goodenia	51	24	S					
Goodia lotifolia	Golden-tip	2	1	С	М				
†Gratiola peruviana	Austral Brooklime	1	0	С					Pioneer Quarry report 1998
Gratiola pubescens	Glandular Brooklime	4	3	Е	М				
Gynatrix pulchella	Hemp Bush	15	9	R					
Hakea decurrens	Bushy Needlewood	0	0	X					1936 FNCV report
Hakea nodosa	Yellow Hakea	4	2	V					•
Hakea ulicina	Furze Hakea	3	1	C					
Haloragis heterophylla	Varied Raspwort	1	0	Е					
Hardenbergia violacea	Purple Coral-pea	27	14	S					
Helichrysum scorpioides	Button Everlasting	17	10	S					
Hemarthria uncinata	Mat Grass	18	8	S					
Hibbertia riparia	Erect Guinea-flower	21	14	S					

		No.	No.	(Conse	rvation	Status	3	Comment.
Scientific Name	Common Name	of Sites	of Res- erves	Knox			State	Nati- onal	Comments or source of record
Histiopteris incisa	Bat's Wing Fern	3	2	V					
Hovea linearis (H. heterophy		17	11	S					
Hydrocotyle foveolata	Yellow Pennywort	5	3	Ē					
Hydrocotyle geraniifolia	Forest Pennywort	2	2	V	М				
Hydrocotyle hirta	Hairy Pennywort	14	7	S					
Hydrocotyle laxiflora	Stinking Pennywort	2	1	С					
Hydrocotyle sibthorpioides	Shining Pennywort	1	0	S					Found in lawns
Hymenanthera dentata	Tree Violet	5	2	V					
51 0	Small St John's Wort	43	25	S					
51 51	latted St John's Wort	1	1	C	М				
Hypolepis glandulifera	Downy Ground-fern	2	0	E	Μ				
Hypolepis muelleri	Marsh Ground-fern	1	0	C	M				
Hypolepis rugosula	Ruddy Ground-fern	5	3	V	M				
	Golden Weather-glass	2	2	C					
Hypoxis vaginata	Sheath Star	4	3	V					
Imperata cylindrica Indiactora gustralia	Blady Grass	12	5	R					
Indigofera australis	Austral Indigo	14	9 0	S K					
Isolepis ?cernua	Nodding Club-rush Floating Club-rush	0	0	K E					
Isolepis fluitans Isolepis hookeriana	Grassy Club-rush	4	1	E V					
Isolepis inundata	Swamp Club-rush	22	12	v S					
Isolepis marginata	Little Club-rush	22	12	N V					
Isolepis marginaia Isolepis platycarpa	a Club-rush	6	5	V					
Isotoma fluviatilis	Swamp Isotome	2	1	E E	М				
	vertop Wallaby-grass	47	22	S	101				
Juncus amabilis	Hollow Rush	36	17	S					
Juncus australis	Austral Rush	3	2	E	М				
Juncus bufonius	Toad Rush	21	11	S					
Juncus gregiflorus	Green Rush	35	17	S					
Juncus holoschoenus	Joint-leaf Rush	13	9	R					See note at end of table
Juncus pallidus	Pale Rush	42	20	S					
Juncus pauciflorus	Loose-flower Rush	6	3	S					Common in stream channels
Juncus planifolius	Broad-leaf Rush	12	5	S					
Juncus procerus	Tall Rush	23	13	S					
Juncus sarophorus	Broom Rush	39	17	S					
Juncus subsecundus	Finger Rush	23	10	S					
Juncus vaginatus	Clustered Rush	2	1	С	Μ				
Kennedia prostrata	Running Postman	9	5	V					
Kunzea ericoides	Burgan	48	22	L					
	Slender Lagenophora	17	13	S					
	ommon Lagenophora	10	5	R	14				
Lastreopsis acuminata	Shiny Shield-fern	1	0	E	Μ				
Lemna disperma	Common Duckweed	9	3	R					
Lepidosperma elatius	Tall Sword-sedge	21	12	S	м				See note at end of table
	ommon Rapier-sedge Slender Sword-sedge	5 33	2 16	R S	M				
	/ariable Sword-sedge	25	10	S					See note at end of table
Lepidosperma talerale Lepidosperma neesii	Stiff Rapier-sedge	1	0	C	М				
Leptorhynchos tenuifolius	Wiry Buttons	14	7	S	141				
Leptospermum continentale	Prickly Tea-tree	56	25	S					
Leptospermum lanigerum	Woolly Tea-tree	6	5	V					
Leptospermum scoparium	Manuka	32	16	S					
	Common Beard-heath	1	0	C					
Lindsaea linearis	Screw Fern	16	11	S					
Linum marginale	Native Flax	5	1	R					
Lobelia anceps	Angled Lobelia	16	9	S					
Lobelia gibbosa	Tall Lobelia	1	0	Е	М				
Lomandra filiformis ssp. corid	acea Wattle Mat-rush	84	42	L					

	No.	No.	(Conse	rvation	Statu	s	Comments or
Scientific Name Common Name	of Sites	of Res-	Knox	Melb	PPW	State	Nati- onal	source of record
		erves					Ullai	1
Lomandra filiformis ssp. filiformis Wattle Mat-rush	47	22	S					
Lomandra longifolia Spiny-headed Mat-rush	68	35	L					
Lomandra multiflora Many-flowered Mat-rush	1	0	C	м				
Lomatia ilicifolia Holly Lomatia	2	0	E	M				Darhang introduced
Ludwigia sp. an unidentified water-primrose Luzula meridionalis Common Woodrush	1 8	0 6	K R					Perhaps introduced Not identified to var. level
*Luzula meridionalis var. flaccida	0	0						Not identified to var. level
Common Woodrush	0	0	K	M				Paget, 1985
<i>Lycopus australis</i> Australian Gipsywort	3	2	E	M				
Lyperanthus suaveolens Brown-beaks	2	0	C					Phillippa Rd, Boronia
<i>Lythrum hyssopifolia</i> Small Loosestrife	28	12	S					
Mazus pumilio Swamp Mazus	1	0	C	M				
Melaleuca ericifolia Swamp Paperbark	43	21	S					1000 : 614
*Melaleuca parvistaminea	0	0	E	М				1990 specimen of W. Molyneux
Rough-barked Honey-myrtle Melaleuca squarrosa Scented Paperbark	2	0	E					
Microlaena stipoides Weeping Grass	95	45	L					
Microseris scapigera spp. agg. Yam-daisy	1	0	C					
Microtis parviflora Slender Onion-orchid	11	7	R					
* <i>Microtis rara</i> Sweet Onion-orchid	0	0	X	М				Flora of Melbourne
Microtis unifolia Common Onion-orchid	1	0	Е					
Montia fontana Water Blinks	1	1	С	М	K	K		Discovered October 2004
Muellerina eucalyptoides Creeping Mistletoe	17	6	S					
Myriophyllum crispatum Upright Milfoil	3	2	V	М				
<i>Myriophyllum ?simulans</i> Amphibious Milfoil	0	0	V	Μ				J. Reid, 1997
*Neopaxia australasica (White Purslane)	1	0	C	M				Pioneer Quarry report 1998
Notodanthonia – see Danthonia								
Olearia argophylla Musk Daisy-bush	6	3	R	M				
Olearia lirata Snowy Daisy-bush	19	9	S					
Olearia myrsinoides Silky Daisy-bush	10	5	S					
Olearia ramulosa Twiggy Daisy-bush	2	0	K					Possibly planted
Opercularia ovata Broad-leaf Stinkweed	21	11	S					
Opercularia varia Variable Stinkweed	38	19	S	м				
Orthoceras strictumHorned OrchidOttelia ovalifoliaSwamp Lily	1	1 0	C V	M M				
Ottelia ovalifoliaSwamp LilyOxalis perennans/exilisWood-sorrel	1 62	33	L	IVI				See note at end of table
Ozothamnus ferrugineus Tree Everlasting	58	27	L					
Ozothamnus obcordatus Grey Everlasting	1	0	C	М				One plant, in Boronia
Ozothamnus rosmarinifolius Rosemary Everlasting	1	1	C	M	R			One plant, in Doronia
Pandorea pandorana Wonga Vine	27	14	S	1.1				
Patersonia occidentalis Long Purple-flag	4	3	R					
<i>†Pelargonium australe</i> Austral Stork's-bill	1	0	С					
Pelargonium inodorum Kopata	2	1	E					
Pentapogon quadrifidus Five-awned Spear-grass	2	2	E					
Persicaria decipiens Slender Knotweed	33	19	S					
Persicaria hydropiper Water-pepper	13	7	S					
Persicaria lapathifolia Pale Knotweed	7	7	R					
Persicaria praetermissa Spotted Knotweed	8	5	R	M				
Persicaria subsessilis Hairy Knotweed	8	3	R	M				
Persoonia juniperinaPrickly GeebungPhragmites australisCommon Reed	2 20	0 9	E S					
Phylloglossum drummondii Pigmy Clubmoss	0	0	X	М				1906 specimen; 1909 FNCV report
Pimelea axiflora Bootlace Bush	5	3	R	М				
Pimelea curviflora Curved Rice-flower	6	1	V	174				
Pimelea humilis Common Rice-flower	27	15	S					
Pittosporum bicolor Banyalla	1	0	E	М				
Plantago debilisShade Plantain	3	1	V	M				

	No.	No.	(Conse	rvation	Status	5	Comments or
Scientific Name Common Name	of Sites	of Res- erves	Knox	Melb	PPW	State	Nati- onal	source of record
Plantago varia Variable Plantain	17	10	S					
Platylobium formosum Handsome Flat-pea	32	15	S					
Platylobium obtusangulum Common Flat-pea	25	13	S					
Pleurosorus rutifolius Blanket Fern	1	0	С	М				
Poa ?clelandii Matted Tussock-grass	1	1	C	Μ				
Poa ensiformis Purple-sheathed Tussock-grass	26	16	S					
Poa labillardierei Common Tussock-grass	6	2	E					
Poa morrisii Velvet Tussock-grass	73	34	L					
Poa ?sieberiana Grey Tussock-grass	3	1	E					Possibly all P. morrisii
Poa tenera Slender Tussock-grass	29	13	S					
Polyscias sambucifoliaElderberry PanaxPolystichum proliferumMother Shield-fern	14	9	S					
5 1 5	7	4	R S					
Pomaderris asperaHazel PomaderrisPomaderris lanigeraWoolly Pomaderris	14	0	E E	M				
Pomaderris racemosa Cluster Pomaderris	7	5	V	IVI				
Poranthera microphylla Small Poranthera	56	27	L					
Potamogeton crispusCurly Pondweed	7	4	S	М				
Potamogeton ochreatus Blunt Pondweed	6	3	S	101				
Potamogeton pectinatus Entit Pondweed Potamogeton pectinatus Fennel Pondweed	1	0	Ē	М				In a single settlement pond
*Potamogeton tricarinatus Floating Pondweed	1	1	V	M				R. Brown, 2002
* <i>Prasophyllum australe</i> Austral Leek-orchid	0	0	X					Flora of Melbourne
<i>†Prasophyllum brevilabre</i> Short-lip Leek-orchid	0	0	V					Flora of Melbourne
* <i>Prasophyllum frenchii</i> Slaty Leek-orchid	0	0	Х	М		Е	Е	1926 specimen
*Prasophyllum lindleyanum Green Leek-orchid	0	0	X	М		V		3 specimens, 1906-30
*Prasophyllum odoratum Sweet Leek-orchid	0	0	С	М				1926 specimen
* <i>Prasophyllum pyriforme</i> Silurian Leek-orchid	0	0	X			K		1930 specimen; See the notes at the end of the table
Prostanthera lasianthos Vic. Christmas-bush	19	11	S					
Pseudognaphalium luteoalbum Jersey cudweed	2	1	V					
Pteridium esculentum Austral Bracken	53	25	L					
Pteris tremula Tender Brake	2	1	R	M				
Pterostylis alpina Mountain Greenhood	1	0	E					
<i>†Pterostylis atrans</i> Dark-tip Greenhood	0	0	X	М				1924 specimen, perhaps outside Knox
*Pterostylis curta Blunt Greenhood	1	1	С					Seen by John Jeanes in Boronia
*Pterostylis decurva Summer Greenhood	0	0	X	М				1925 specimen, perhaps outside Knox
*Pterostylis furcata Sickle Greenhood	0	0	X	M				Flora of Melbourne
\dagger <i>Pterostylis</i> \times <i>ingens</i> Sharp Greenhood	0	0	X	М		R		Flora of Melbourne; seen by John Jeanes in Boronia
Pterostylis longifolia (=P. melagramma) Tall Greenhood	6	3	V					
Pterostylis nutans Nodding Greenhood	16	10	S					
† <i>Pterostylis parviflora</i> Tiny Greenhood	0	0	C					Gary Cheers, c.1980; Paget c.1987
Pterostylis pedunculata Maroon-hood	3	2	C					
Pultenaea gunnii Golden Bush-pea	20	11	S					
Pultenaea hispidula Rusty Bush-pea	1	0	C	M				Private land in Boronia
Pultenaea pedunculata Matted Bush-pea	2	0	E	M				
Pultenaea scabra Rough Bush-pea	5	2	R					
*Ranunculus amphitrichus Small River Buttercup	0	0	C	M				Pioneer Quarry report, 1998
*Ranunculus inundatus River Buttercup	1	1	E	M				R. Brown, 2002
Ranunculus lappaceus Australian Buttercup	5	3	V	17				
<i>†Ranunculus pumilio</i> Fan-leaf Buttercup	1	0	C	M				Pioneer Quarry report, 1998
*Rapanea howittiana Muttonwood	2	1	E					R. Brown, 2002 (& others)
Rubus parvifolius Small-leaf Bramble	16 2	5	S C					
Rumex brownii Slender Dock								

Scientific Name Common Name		No.	No.	(Conse	rvation	Statu	5	Comments or
Scientific Name	Common Name	of Sites	of Res- erves	Knox	Melb	PPW	State	Nati- onal	source of record
Schoenus apogon	Common Bog-rush	49	23	L					
Schoenus lepidosperma	Slender Bog-rush	0	0	C	М				Paget, 1985
Schoenus maschalinus	Leafy Bog-rush	2	1	Е	М				
Schoenus tesquorum	Soft Bog-rush	2	1	V	М				
Selaginella uliginosa	Swamp Selaginella	1	1	Е	М				
Senecio glomeratus	Annual Fireweed	21	11	S					
Senecio hispidulus var. di	ssectus Rough Fireweed	2	1	E	М				
Senecio hispidulus var. hi	spidulus " "	31	16	L					
Senecio linearifolius	Fireweed Groundsel	2	0	C	M				
Senecio minimus	Shrubby Fireweed	26	14	S					
Senecio quadridentatus	Cotton Fireweed	40	14	L					
Senecio tenuiflorus	Narrow Groundsel	15	6	S					Newly recognised in
Senecio glandulosus	a senecio	1	1	V	K	?	?	?	Victoria, perhaps rare.
Sigesbeckia orientalis	Indian Weed	3	2	R	M				
Solanum aviculare	Kangaroo Apple	3	2	V					
Solanum laciniatum	Large Kangaroo Apple	23	13	S	1.1				
Solanum prinophyllum Solanogyna dominii	Forest Nightshade	1	0	V s	M				See notes at and of table
Solenogyne dominii Solenogyne gunnii	Solenogyne Solenogyne	9 1	6 0	S R					See notes at end of table See notes at end of table
Solenogyne gunnii Sphaerolobium minus	Globe-pea	2	1	K V	M				see notes at end of table
<i>†Spiranthes sinensis</i>	Ladies' Tresses	1	1	C V	M				J. Reid, 1997
Spirodela punctata	Thin Duckweed	2	2	E	M				J. Reid, 1997
	Australian Dusty Miller	10	7	R					Some populations are only 1 or 2 plants
Stackhousia monogyna	Candles	18	9	S					
Stellaria flaccida	Forest Starwort	2	1	V	М				
Stellaria pungens	Prickly Starwort	2	0	С					
Stipa mollis	a Spear-grass	2	1	V					
Stipa pubinodis	a spear-grass	35	17	S					
Stipa rudis subsp. austral		3	1	V	Μ		R		
Stipa rudis subsp. rudis	Veined Spear-grass	83	42	L					
Stylidium sp. 2	Grass Trigger-plant	20	10	S					
Tetraria capillaris	Hair-sedge	1	1	R	M				
Tetrarrhena juncea	Forest Wire-grass	24	12	S					
Tetratheca ciliata	Pink-bells	7	3	R	м				U.M. 1007 ENGV 1020
<i>†Thelionema caespitosum</i>	Tufted Blue-lily Rabbit-ears	1 0	0	C X	M				H. Moss 1997; FNCV 1929
*Thelymitra antennifera *Thelymitra aristata	Great Sun-orchid	0	0	A X	М				1929 FNCV report 1930 specimen
*Thelymitra carnea	Salmon Sun-orchid	0	0	X	M				1930 specifien 1929 FNCV report
Thelymitra ?holmesii	Sumon Sun-Oreniu								
	Blue Swamp Sun-orchid	3	1	E	M				See notes at end of table
Thelymitra ixioides	Dotted Sun-orchid	2	1	С					
*Thelymitra luteocilium	Fringed Sun-orchid	0	0	Х	М		R		Flora of Melbourne
Thelymitra media	Tall Sun-orchid	2	1	V					
Thelymitra pauciflora gro	-	16	8	S					
Thelymitra rubra	Salmon Sun-orchid	1	1	E					
Themeda triandra	Kangaroo Grass	78	33	L					
Thysanotus patersonii	Twining Fringe-lily	5	2	R					
Thysanotus tuberosus	Common Fringe-lily	5	4	V					
Tricoryne elatior	Yellow Rush-lily Water ribbons	29	17	S					
Triglochin procerum Triglochin strigtum	Water-ribbons	6 10	5 7	S V					See notes at and of table
Triglochin striatum Typha domingensis	Streaked Arrow-grass	10	5	V S					See notes at end of table
Typha domingensis Typha orientalis	Cumbungi Cumbungi	14	5 8	S S					
Urtica incisa	Scrub Nettle	15	0	V V	М				
†Utricularia dichotoma	Fairies' Aprons	0	0	X	1.41				1906 FNCV report
Veronica calycina	Hairy Speedwell	6	3	V					

		No. of	of		6	Comments or			
Scientific Name	Name Common Name		Res- erves		Melb	PPW	State	Nati- onal	source of record
Veronica gracilis	Slender Speedwell	26	10	S					
Veronica plebeia	Trailing Speedwell	8	5	V					
Villarsia reniformis	Running Marsh-flower	2	1	C	Μ				
Viminaria juncea	Golden Spray	3	0	V	Μ				
Viola hederacea	Ivy-leaf Violet	43	22	S					
*Viola ?sieberiana	Tiny Violet	0	0	K	Μ				Paget 1985, perhaps dubious
Wahlenbergia gracilenta	Annual Bluebell	1	0	C					Pioneer Quarry report 1998
Wahlenbergia gracilis	Sprawling Bluebell	12	6	S					
Wahlenbergia gymnoclada	Naked Bluebell	1	0	С	Μ				
Wahlenbergia multicaulis	Tadgell's Bluebell	3	0	С	Μ				
Wahlenbergia stricta	Tall Bluebell	7	1	V					
Wolffia australiana	Tiny Duckweed	3	2	E	Μ				
Wurmbea dioica	Common Early Nancy	8	6	R					
Xanthorrhoea minor	Small Grass-tree	30	14	S					
Xanthosia dissecta	Cut-leaf Xanthosia	16	12	S					

Poorly understood species

Acacia leprosa (Dandenong Range variant): This is a presently regarded as a local form of a widespread species, but may eventually be recognised as a distinct species (according to Dr. N.G. Walsh at the National Herbarium of Victoria). It is abundant between the Dandenongs and North Ringwood, and in no threat of extinction. It is listed as 'Rare' in Victoria because it is fairly localised, but it is not rare in the normal sense of that word.

Acaena agnipila, A. echinata and A. ovina (Sheep's Burrs) form a group of species whose distinctions are not well definined, in this author's view (after inspecting all specimens at the National Herbarium of Victoria and discussing them with Mr Jeff Jeanes, who provided the treatment of this group in *Flora of Victoria*). Specimens from Melbourne's eastern suburbs mostly do not fit the descriptions in standard references such as *Flora of Victoria*. The entry in the table above for *Acaena echinata* includes specimens that show characteristics of *A. agnipila* and *A. ovina*.

Calystegia sepium: Most records of this species in Knox investigated by the author appear to be misidentifications of the introduced *C. silvatica* or hybrids between the two species. The formation of hybrid swarms is discussed by J. Ogden in *NZ J. Botany* **16**:123-140 (1978) but has been little recognised by Victorian field botanists. Note that typical *C. sepium* has capsules = 8 mm long. *C. sepium* is regarded here as Critically Endangered because of the apparent replacement by the extremely weedy introduced and hybrid *Calystegias*.

Cotula coronopifolia has been regarded by the Melbourne Royal Botanic Gardens as indigenous at some times and introduced at others. The most recent publication lists it as 'status uncertain'. It has been included in Appendix C with introduced species, but if it were to be regarded as indigenous, it would be listed above as rare (but not threatened) in Knox and not significant in a broader context. It has been recorded in eight sites in Knox, four of them in the 'Reserves' category.

Dichelachne spp.: *Flora of Victoria* (Walsh & Entwistle, 1994) recognise both *Dichelachne rara* and *D. sieberiana*. The distinguishing characteristics they quote are confounding in Knox, with characteristics of both species sometimes seen in individual plants. Although both names are listed in the table above on the basis of specimens collected and identified by Dr Lorimer, he has misgivings that there are scant grounds for recognition of two species.

Juncus holoschoenus: The distinction between Juncus holoschoenus and J. fockei is obscure. An expert on this group, L.A.S. Johnson, identified some herbarium specimens from the eastern suburbs of Melbourne as the latter species, and some years later changed all of his former identifications to J. holoschoenus, despite the fact that his current botanical key indicates otherwise. Regardless, there are two distinct taxa in and around Knox - one whose capsules are narrowly acute and exceed the sepals by about 1 mm, and the other with obtuse capsules that barely exceed the sepals. By the key in Flora of Victoria (Walsh and Entwistle, 1994), the former would be regarded as J. fockei and is fairly common in wetlands across Knox. In the species list above, we have opted to conform with Johnson's herbarium determinations and call all specimens from Knox J. holoschoenus, but with misgivings.

Lepidosperma: The name *Lepidosperma laterale* is widely applied to a range of forms that vary greatly from one another, particularly in size. Such a broad interpretation of *L. laterale* is unsatisfactory in the field as it fails to account for the apparent ecological variation that suggests more than one taxon is involved. In addition, the distinction between *L. laterale* and *L. gunnii*

at the small-size extreme and between *L. laterale* and *L. elatius* at the large-size extreme is unclear. We have collected specimens which span the full range between these extremes. It is recognised that some botanists may call the largest specimens in Knox *L. laterale* var. *majus* (a name not presently accepted by the National Herbarium of Victoria) but the name *L. elatius* is used here.

Oxalis perennans: Some botanists recognise *O. exilis* as a distinct species from *O. perennans*, but the distinguishing characteristics of both species are often not discernible. We therefore lump these two entities together in a broad concept of *O. perennans*.

Prasophyllum pyriforme: This name is currently used to include five specimens collected in Knox long ago and initially identified as *P. frenchii*. Further investigation is needed to determine its taxonomic status; some authors treat it as conspecific with the South Australian *P. constrictum* (Backhouse and Jeanes, 1995).

Solenogyne specimens have been determined as well as possible according to the treatment in *Flora of Victoria* Volume 4, but with misgivings that plants of *S. gunnii* may sometimes better fit the Flora's description of *S. dominii*, particularly in winter.

Thelymitra pauciflora/homesii: This taxonomic group probably contains several distinct entities in Knox. Some plants of swampy, periodically inundated ground around Knox have been previously determined by Mr Jeff Jeanes as *Thelymitra holmesii*, but at the time of writing this, he is in the process of preparing a manuscript to describe a new species name for such plants.

Triglochin striatum: Plants with narrow, cylindrical leaves and plants with flat, strap-like leaves are included under this name by current convention. Plants with narrow, cylindrical leaves (typical *T. striatum*) have not been recorded in Knox. Conn and Aston (in Walsh and Entwisle, 1994) state that the form in Knox probably constitutes a distinct (as yet unnamed) species.

Appendix C – Environmental Weeds of Knox

The table below lists 234 naturalised plant species that were recorded within remnant vegetation during fieldwork. A few inconsequential weeds that appear occasionally after recent soil disturbance have been omitted from the list. Nomenclature follows the same conventions as Appendix B.

The scientific names of weeds covered by the Catchment and Land Protection Act 1994 are underlined.

The column headed 'Severity in Victoria generally' is taken from Carr, Yugovic and Robinson (1992). The categories defined by Carr *et al.* are:

- V Very serious threat to one or more vegetation formations;
- S Serious threat to one or more vegetation formations;
- P Potential threat to one or more vegetation formations;
- N Not a threat, but may have negative visual impact.

Presumably, category 'P' also includes weeds that pose some threat but are not serious.

A corresponding categorisation of weeds in Knox appears in the last column of the table below, with the four categories defined more precisely (see p.11). The author has drawn heavily on this project's fieldwork observations – particularly the frequency of each species' occurrence and the highest severity category that was assigned to it (see Section 2.4.3).

Scientific Name	Common Name	Severity in Victoria	Severity in Knox	Scientific Name Common Name Severity in Knox
Acacia baileyana	Cootamundra Wattle	V	Р	Bromus diandrus Great Brome V S
Acacia decurrens	Early Black Wattle	V	Ν	Bromus hordeaceus Soft Brome S N
Acacia elata	Cedar Wattle	V	Р	Buddleja davidii Butterfly-bush S P
Acacia floribunda	White-sallow Wattle	Р	Ν	Callitriche stagnalis Water Starwort P S
Acacia longifolia v. lon	agifolia Sallow Wattle	V	V	Calystegia silvatica Greater Bindweed S V
Acacia prominens	Gosford Wattle	S	Ν	Cardamine flexuosa Wood Bitter-cress - N
Acacia retinodes	Wirilda	S	Ν	Cardamine hirsuta Hairy Wood-cress P N
Acanthus mollis	Bear's Breach	Р	Ν	Centaurium erythraea Common Centaury S S
Acer negundo	Box Elder	Р	S	Centaurium tenuiflorum Branched Centaury S N
Acer pseudoplatanus	Sycamore Maple	V	S	Cerastium glomeratum
Agapanthus praecox	Agapanthus	S	S	Common Mouse-ear Chickweed
Agrostis capillaris	Brown-top Bent	V	S	Cestrum elegans Red Cestrum S V
Aira caryophyllea	Silvery Hair-grass	S	Р	Chamaecytisus palmensis Tree Lucerne V S
Aira cupaniana	Small Hair-grass	Р	Р	Chlorophytum comosum Spider Plant - P
Aira elegantissima	Elegant Hair-grass	S	Р	Chrysanthemoides monilifera ssp. monilifera
<u>Allium triquetrum</u>	Angled Onion	V	V	Boneseed
Alopecurus geniculatus		S	Р	Cicendia filiformis Slender Cicendia P N
Alopecurus pratensis	Meadow Fox-tail	Р	Р	<u>Cirsium vulgare</u> Spear Thistle S S
Anagallis arvensis	Pimpernel	S	Р	Conium maculatum Hemlock S P
Anagallis minima	Chaffweed	Р	Р	Conyza albida Fleabane S S
Anthoxanthum odoratu	<i>m</i> Sweet Vernal-grass	V	V	Conyza bonariensis Tall Fleabane - N
Arbutus unedo	Irish Strawberry Tree	Р	Р	Coprosma repens Mirror-bush V S
Arctotheca calendula	Cape Weed	S	Р	Coprosma robusta Karamu V V
Arrhenatherum elatius	var. <i>bulbosum</i>	Р	Р	Cordyline australis NZ Cabbage Tree P P
Onion T	witch, False Oat-grass	I	1	Cortaderia selloana Pampas Grass V S
Arundo donax	Giant Reed	Р	S	Cotoneaster divaricatus Cotoneaster V S
Asparagus asparagoide	es Bridal Creeper	V	S	Cotoneaster franchetii Grey Cotoneaster - N
Asparagus scandens	Asparagus Fern	V	V	Cotoneaster glaucophyllus Cotoneaster V S
Aster subulatus	Aster-weed	S	Р	Cotoneaster pannosus Cotoneaster V S
Atriplex prostrata	Hastate Orache	S	Ν	Cotula coronopifolia [*] Water Buttons S P
Avena barbata	Bearded Oat	S	Ν	Crassula multicava Shade Crassula P N
Berberis darwinii	Darwin's Barberry	Р	Р	<u>Crataegus monogyna</u> Hawthorn V V
Bidens tripartita	Trifid Burr-marigold	-	S	Crepis capillaris Smooth Hawksbeard S P
Brassica sp. (Lysterfield	Rd roadside) brassica	-	S	$Crocosmia \times crocosmii flora$ Montbretia V V
Briza maxima	Large Quaking-grass	V	V	Cynara cardunculus Spanish Artichoke V N
Briza minor	Lesser Quaking-grass	Р	Ν	-
Bromus catharticus	Prairie Grass	V	S	* Possibly indigenous see two pages up

* Possibly indigenous - see two pages up.

Scientific Name	Common Name	Severity in Victoria	Severity in Knox	Scientific Name
Cynodon dactylon var. da	actylon Couch	V	S	Lotus uliginosus G1
Cynosurus echinatus	Rough Dog's-tail	S	P	Lythrum junceum M
Cyperus eragrostis	Drain Flat-sedge	S	S	$Malus \times domestica$
Cyperus tenellus	Tiny Flat-sedge		P	Medicago polymorph
Cytisus scoparius	English Broom		V	Melaleuca armillaris
Dactylis glomerata	Cocksfoot		S	Melilotus indicus
Delairea odorata	Cape Ivy	V	V	Mentha pulegium
Dodonaea viscosa	Sticky Hop-bush	-	Ν	Mentha spicata
Duchesnea indica	Indian Strawberry	-	Р	Mentha ×piperita Pe
Echinochloa crus-galli	Barnyard Grass	-	Р	Modiola caroliniana
<u>Echium plantagineum</u>	Paterson's Curse	S	Р	Myoporum insulare
Egeria densa	Dense Waterweed		S	Myosotis laxa subsp.
Ehrharta erecta	Panic Veldt-grass		V	
Ehrharta longiflora	Annual Veldt-grass	V	S	Myosotis sylvatica
1	andular Willow-herb		Р	Myriophyllum aquati
Erica lusitanica	Spanish Heath		V	Nephrolepis cordifol
Erigeron karvinskianus	Bony-tip Fleabane		Р	Omalanthus nutans
Eriobotrya japonica	Loquat		N	Oxalis incarnata
Euphorbia peplus	Petty Spurge		N	Oxalis pes-caprae
Festuca arundinacea Festuca rubra	Tall Fescue Red Fescue		P	Oxalis purpurea La
	Fennel	-	N P	Paraserianthes lopha Parentucellia viscosa
Foeniculum vulgare	Desert Ash		P S	
Fraxinus angustifolia Freesia alba x leichtlinii	Freesia		N N	Paspalum dilatatum Paspalum distichum
Fumaria bastardii	Bastards Fumitory		P	Passiflora mollissime
Fumaria capreolata	Ramping Fumitory		P	Pennisetum clandesti
Galium aparine	Cleavers		V	Persicaria maculosa
Gamochaeta purpurea	Spiked Cudweed		Ň	Phalaris aquatica Te
<u>Genista linifolia</u>	Flax-leafed Broom		S	Phalaris arundinaced
<u>Genista monspessulana</u>	Montpellier Broom		v	Phalaris minor
Gladiolus undulatus	Wild Gladiolus		S	Phytolacca octandra
Glyceria declinata	Manna Grass		Р	Pinus pinaster
•	hybrids and cultivars	S	Ν	Pinus radiata
Grevillea rosmarinifolia			Ν	Pittosporum undulati
Hakea salicifolia	Willow-leaf Hakea	V	Р	Plantago coronopus
Hedera helix	Ivy	V	V	Plantago lanceolata
Helminthotheca echioide.	s Ox-tongue	S	Ν	Plantago major
Holcus lanatus	Yorkshire Fog	V	S	Polygala myrtifolia
<u>Hypericum androsaemun</u>	<u>1</u> Tutsan	V	Р	Populus alba
<u>Hypericum tetrapterum</u>	St Peter's Wort or	Р	V	Prunella vulgaris
-	stem St John's Wort	-	v	Prunus cerasifera
Hypochoeris glabra	Smooth Cat's Ear		Ν	Prunus laurocerasus
Hypochoeris radicata	Cat's Ear		S	Psoralea pinnata
Ilex aquifolium	Holly		Р	Pyracantha sp.
•	ear's Morning-glory		Р	Quercus robur
Ixia polystachya	Variable Ixia		Р	Ranunculus muricatu
Jasminum ?polyanthum	Jasmine		Р	Ranunculus repens
	arp (or Spiny) Rush	V	P	Raphanus raphanistr
Juncus articulatus	Jointed Rush	V	V	Rhaphiolepis indica
Juncus bulbosus	Bulbous Rush	S P	P	Romulea rosea
Juncus capitatus	Dwarf Rush		P P	Rorippa nasturtium-o
Juncus microcephalus Juncus tenuis	Tiny Rush Slender Rush		P P	Rorippa palustris
	Dusky Coral-pea		P P	<u>Rosa rubiginosa</u> <u>Rubus discolor</u>
Konnodia rubiounda		P	N I	Rubus ulmifolius
	Dad Uat Dakara		11	Kubus uimijoitus
Kniphofia uvaria	Red Hot Pokers		N	Rumer conclomerate
Kniphofia uvaria Lactuca serriola	Prickly Lettuce	Р	N P	Rumex conglomeratu Rumex crispus
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides	Prickly Lettuce Hairy Hawkbit	P S	Р	Rumex crispus
	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle	P S V	P P	Rumex crispus Rumex pulcher subsp
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides Leycesteria formosa Hin Ligustrum lucidum	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle Large-leafed Privet	P S V P	P P P	Rumex crispus Rumex pulcher subsp Salix babylonica s.l.
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides Leycesteria formosa Hin Ligustrum lucidum Lilium formosanum	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle Large-leafed Privet Lily	P S V P P	P P P P	Rumex crispus Rumex pulcher subsp Salix babylonica s.l. Salix cinerea
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides Leycesteria formosa Hin Ligustrum lucidum Lilium formosanum Linum trigynum	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle Large-leafed Privet Lily French Flax	P S V P P P	P P P S	Rumex crispus Rumex pulcher subsp Salix babylonica s.l. Salix cinerea Salix fragilis
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides Leycesteria formosa Hin Ligustrum lucidum Lilium formosanum Linum trigynum Lolium perenne	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle Large-leafed Privet Lily French Flax Perennial Rye-grass	P S V P P S	P P P S N	Rumex crispus Rumex pulcher subsp Salix babylonica s.l. Salix cinerea Salix fragilis Salix × reichardtii
Kniphofia uvaria Lactuca serriola Leontodon taraxacoides Leycesteria formosa Hin Ligustrum lucidum Lilium formosanum Linum trigynum Lolium perenne	Prickly Lettuce Hairy Hawkbit nalayan Honeysuckle Large-leafed Privet Lily French Flax	P S V P P S	P P P S	Rumex crispus Rumex pulcher subsp Salix babylonica s.l. Salix cinerea Salix fragilis

Scientific Name	Common Name	Severity	Severity
Scientific Name	Common Name	in Victoria	in Knox
8	ater Bird's-foot Trefoil	V	S
Lythrum junceum Mee		S	Р
Malus \times domestica	Domestic Apple	N	N
Medicago polymorpha	Burr Medic	S	N
Melaleuca armillaris		V	S
Melilotus indicus	Sweet Melilot	S S	N
Mentha pulegium Mentha spicata	Pennyroyal	S S	N P
	Spearmint bermint or Lemon Mint	S	г Р
Menina ×piperna Fep Modiola caroliniana	Carolina Mallow	P	r N
Myoporum insulare	Common Boobialla	-	N
<i>Myosotis laxa</i> subsp. <i>c</i>			
нуозонз шли забър. С	Water Forget-me-not	S	Р
Myosotis sylvatica	Wood Forget-me-not	S	Р
Myriophyllum aquaticı	-	P	v
Nephrolepis cordifolia	Fishbone Fern	-	N
Omalanthus nutans	Bleeding Heart	-	Ν
Oxalis incarnata	Pale Wood-sorrel	S	v
Oxalis pes-caprae	Soursob	V	V
	ge-flower Wood-sorrel	S	Р
Paraserianthes lophan		V	Р
Parentucellia viscosa	Sticky Bartsia	Р	Ν
Paspalum dilatatum	Paspalum	V	V
Paspalum distichum	Water Couch	V	V
Passiflora mollissima	Banana Passionfruit	V	S
Pennisetum clandestin	um Kikuyu	V	S
Persicaria maculosa	Persicaria	Р	Р
Phalaris aquatica Too	woomba Canary-grass	V	V
Phalaris arundinacea	Reed Canary-grass	V	Р
Phalaris minor	Lesser Canary-grass	S	Р
Phytolacca octandra	Red-ink Weed	S	Р
Pinus pinaster	Maritime Pine	V	Р
Pinus radiata	Monterey Pine	V	V
Pittosporum undulatun		V	V
Plantago coronopus	Buck's-horn Plantain	S	Р
Plantago lanceolata	Ribwort	S	S
Plantago major	Greater Plantain	Р	Р
Polygala myrtifolia	Myrtle-leaf Milkwort	V	Р
Populus alba	White Poplar	Р	Р
Prunella vulgaris	Self-heal	-	Р
Prunus cerasifera	Cherry-plum	V	S
Prunus laurocerasus	Cherry Laurel	V	Р
Psoralea pinnata	Blue Psoralea	V	Р
2 1	unidentified Fire-thorn	V	P
Quercus robur	English Oak	-	N
Ranunculus muricatus	Sharp Buttercup	-	N
Ranunculus repens Barrhania nanhaniatan	Creeping Buttercup	S	V
Raphanus raphanistrui Phanhialanis indiaa		-	N N
Rhaphiolepis indica Romulea rosea	Indian Hawthorn	17	N V
	Common Onion-grass uaticum Watercress	V	V S
Rorippa nasturtium-aq Rorippa palustris	Yellow Marsh-cress	S S	S S
Rorippa palustris <u>Rosa rubiginosa</u>	Sweet Briar	S V	S P
<u>Rubus discolor</u>	Blackberry	v V	P V
<u>kubus aiscoior</u> Rubus ulmifolius	Blackberry	V V	v S
Rumex conglomeratus	Clustered Dock	v S	S S
cumen congiomeraius	Clustered Dock Curled Dock	S	S S
Rumer crisnus		-	N N
Rumex crispus Rumex pulcher subspace			P
Rumex pulcher subsp. J	Weening Willow	· · · ·	
Rumex pulcher subsp. j Salix babylonica s.l.	Weeping Willow Grey Sallow	S V	
Rumex pulcher subsp. j Salix babylonica s.l. Salix cinerea	Grey Sallow	V	S
Rumex pulcher subsp. j Salix babylonica s.l. Salix cinerea Salix fragilis	Grey Sallow Crack Willow	V -	S S
Rumex pulcher subsp. j Salix babylonica s.l. Salix cinerea Salix fragilis Salix × reichardtii	Grey Sallow Crack Willow Pussy Willow	V - -	S S S
Rumex pulcher subsp. j Salix babylonica s.l. Salix cinerea Salix fragilis	Grey Sallow Crack Willow Pussy Willow White Crack Willow	V -	S S

Scientific Name	Common Name	Severity in Victoria	Severity in Knox
Selaginella kraussiana	Garden Selaginella	Р	S
<u>Senecio jacobaea</u>	Ragwort	Р	Р
Sieglingia decumbens	Heath Grass	Р	Р
Sisyrinchium iridifolium	Striped Rush-leaf	Р	Р
Solanum americanum	Glossy Nightshade	Р	Р
Solanum mauritianum	Tobacco-bush	Р	Р
Solanum nigrum s.l.	Black Nightshade	S	S
Solanum pseudocapsicum Ma	n adeira Winter-cherry	V	S
Sollya heterophylla	Bluebell Creeper	V	S
Sonchus asper s.l.	Rough Sow-thistle	S	Ν
Sonchus oleraceus	Sow-thistle	S	Р
Spergularia rubra s.l.	Red Sand-spurrey	Р	Ν
Sporobolus indicus	Indian Rat-tail Grass	S	S
Stellaria media	Chickweed	S	Ν
Stenotaphrum secundatu	<i>m</i> Buffalo Grass	-	Р
Taraxacum sp.	Dandelion	Р	Ν
Tradescantia albiflora	Wandering Jew	V	V
Tragopogon porrifolius	Salsify	Р	Ν
Trifolium campestre	Hop Clover	S	Ν

Scientific Name	Common Name	Severity in Victoria	Severity in Knox
Trifolium dubium	Suckling Clover	S	Р
Trifolium glomeratum	Cluster Clover	S	Ν
Trifolium pratense	Red Clover	Р	Ν
Trifolium repens var. rep	ens White Clover	V	Р
Trifolium subterraneum	Subterranean Clover	S	Ν
Tropaeolum majus	Nasturtium	Р	Р
Typha latifolia	Great Reedmace	V	Р
Ulex europaeus	Gorse (Furze)	V	V
Verbena bonariensis	Purple-top Verbena	S	Р
Viburnum tinus	Laurustinus	Р	Ν
Vicia disperma	French Tiny Vetch	-	S
Vicia hirsuta	Tiny Vetch	Р	S
Vicia sativa	Common Vetch	S	S
Vinca major	Blue Periwinkle	V	S
Viola odorata	Fragrant Violet	Р	Р
Vulpia bromoides	Squirrel-tail Fescue	V	S
Watsonia borbonica	Rosy Watsonia	S	Р
Watsonia meriana var. bi	<u>ılbillifera</u> Bulbil Watsonia	V	V
Zantedeschia aethiopica	White Arum Lily	V	S

Appendix D – Fauna Species of Knox

The following lists include all reliable records of fauna in Knox, either from this study's fieldwork or from other observers who are believed to be reliable.

The numbers in the column headed 'Code' are the species' code numbers in the Atlas of Victorian Wildlife, which are almost the same as in the Census of Australian Vertebrate Fauna in the case of vertebrates. An asterisk before a common name indicates that the species is introduced.

Species with bold entries are listed as threatened under the federal *Environment Protection and Biodiversity Conservation Act 1999* (or EPBC Act). Underlining indicates species listed under the Victorian *Flora and Fauna Guarantee Act 1988*, either for their protection or (in the case of the Red Fox) as a 'threatening process'.

The 'Status' columns, headed 'LCC', 'Vic' and 'EPBC', refer to the species' conservation status as recognised by the Land Conservation Council (1991), the Victorian Department of Sustainability & Environment (2003b) and the EPBC Act. The abbreviations in those columns have the following meanings:

- C: Critically Endangered;
- E: Endangered;
- N: Near Threatened;
- R: Rare;
- U: Uncommon;
- V: Vulnerable.

The date of the most recent reliable record of each species is given in the 'Recency' column.

Ordering of species in the table follows the current taxonomic sequence used by the Department of Sustainability & Environment.

Code	Common Name			;	Recency	This Study?	
				LCC Vic EPBC			
9	Stubble Quail	Coturnix pectoralis			_	1994	No
10	Brown Quail	Coturnix ypsilophora	U	Ν		1994	No
199	Magpie Goose	Anseranas semipalmata	-	V		1994	No
<u>216</u>	Blue-billed Duck	Oxyura australis	R	Е		2004	Yes
217	Musk Duck	Biziura lobata	U	V		1999	No
<u>214</u>	Freckled Duck	Stictonetta naevosa	R	Е		1994	No
203	Black Swan	Cygnus atratus				2002	Yes
207	Australian Shelduck	Tadorna tadornoides	U			1999	No
202	Australian Wood Duck	Chenonetta jubata				2002	Yes
948	*Mallard	Anas platyrhynchos	U			2004	Yes
208	Pacific Black Duck	Anas superciliosa				2004	Yes
212	Australasian Shoveler	Anas rhynchotis	U	V		1999	No
211	Grey Teal	Anas gracilis				2002	Yes
210	Chestnut Teal	Anas castanea				2004	Yes
213	Pink-eared Duck	Malacorhynchus membranaceus	U			2002	No
215	Hardhead	Aythya australis	U	V		2004	Yes
61	Australasian Grebe	Tachybaptus novaehollandiae				2004	Yes
62	Hoary-headed Grebe	Poliocephalus poliocephalus				2001	No
60	Great Crested Grebe	Podiceps cristatus	U			2002	Yes
101	Darter	Anhinga melanogaster	U			2003	Yes
100	Little Pied Cormorant	Phalacrocorax melanoleucos				2003	Yes
99	Pied Cormorant	Phalacrocorax varius	U	Ν		1999	No
97	Little Black Cormorant	Phalacrocorax sulcirostris				2001	No
96	Great Cormorant	Phalacrocorax carbo				2002	Yes

Birds

Page 9	96
--------	----

	Г						
Code	Common Name	Scientific Name		Status		Recency	This
			LCC	Vic	EPBC		Study?
	Australian Pelican	Pelecanus conspicillatus				2004	Yes
	White-faced Heron	Egretta novaehollandiae		_		2004	Yes
	Little Egret	Egretta garzetta	U	Е		1994	No
	White-necked Heron	Ardea pacifica	U	• •		2001	Yes
	Great Egret	Ardea alba		V		2002	Yes
	Intermediate Egret	Ardea intermedia	TT	С		2002	No
	Cattle Egret Nankeen Night Heron	Ardea ibis Nycticorax caledonicus	U U	Ν		2004 1999	Yes No
	Little Bittern	Ixobrychus minutus	R	E		1999	No
	Australasian Bittern	Botaurus poiciloptilus	R	E		1994	No
	Australian White Ibis	Threskiornis molucca	ĸ	L		2004	Yes
	Straw-necked Ibis	Threskiornis spinicollis				2002	Yes
	Royal Spoonbill	Platalea regia		V		2002	Yes
	Yellow-billed Spoonbill	Platalea flavipes				2002	No
232	Black-shouldered Kite	Elanus axillaris				2003	Yes
228	Whistling Kite	Haliastur sphenurus	U			2004	Yes
<u>226</u>	White-bellied Sea-Eagle	Haliaeetus leucogaster	R	V		1996	No
219	Swamp Harrier	Circus approximans				2001	No
	Brown Goshawk	Accipiter fasciatus				2002	Yes
	Grey Goshawk	Accipiter novaehollandiae	R	V		1994	No
	Collared Sparrowhawk	Accipiter cirrhocephalus	U			1999	No
	Wedge-tailed Eagle	Aquila audax	U			2000	No
	Little Eagle	Hieraaetus morphnoides	U			2000	No
	Brown Falcon	Falco berigora	TT			2002	Yes
	Australian Hobby	Falco longipennis	U	Е		2002 1994	Yes No
	Grey Falcon Black Falcon	Falco hypoleucos Falco subniger		E V		1994	No
	Peregrine Falcon	Falco peregrinus	U	v		2002	Yes
	Nankeen Kestrel	Falco cenchroides	U			2002	Yes
	Buff-banded Rail	Gallirallus philippensis	R			2002	Yes
	Lewin's Rail	Rallus pectoralis	R	V		1982	No
	Baillon's Crake	Porzana pusilla	R	V		1999	No
51	Spotless Crake	Porzana tabuensis	R			c.1996	No
49	Australian Spotted Crake	Porzana fluminea	U			2000	No
58	Purple Swamphen	Porphyrio porphyrio				2004	Yes
56	Dusky Moorhen	Gallinula tenebrosa				2004	Yes
	Black-tailed Native-hen	Gallinula ventralis	R			1997	No
	Eurasian Coot	Fulica atra				2004	Yes
	Little Button-quail	Turnix velox	R	Ν		1977	No
	Painted Button-quail	Turnix varia	U			1994	No
	Latham's (or Japanese) Snipe	-	U	N		2004	Yes
	Common Sandpiper	Actitis hypoleucos	U	V		1972	No
	Red-necked Stint	Calidris ruficollis Calidris acuminata	U			1994 1994	No No
	Sharp-tailed Sandpiper Curlew Sandpiper	Calidris ferruginea	U			1994	No
	Black-winged Stilt	Himantopus himantopus	U			1994	No
	-	urvirostra novaehollandiae	R			1972	No
	Red-capped Plover	<i>Charadrius ruficapillus</i>	R			1988	No
	Black-fronted Dotterel	Elseyornis melanops	U			2004	Yes
	Red-kneed Dotterel	Erythrogonys cinctus	Ŭ			2004	No
	Banded Lapwing	Vanellus tricolor	R			1994	No
	Masked Lapwing	Vanellus miles				2004	Yes
	Silver Gull	Larus novaehollandiae				2004	Yes
<u>112</u>	Caspian Tern	Sterna caspia	U	Ν		1998	No
	Common Tern	Sterna hirundo	R			1994	No
	Whiskered Tern	Chlidonias hybridus	U	Ν		1998	No
957		Columba livia				2002	No
989	*Spotted Turtle-Dove	Streptopelia chinensis				2004	Yes

Coste	Common Norro	Colontific Norra	-	Status		Becer	This	
Lode	Common Name	Scientific Name	LCC	Vic	EPBC	Recency	Study?	
34	Common Bronzewing	Phaps chalcoptera				2004	Yes	
	Brush Bronzewing	Phaps elegans				2002	Yes	
	Crested Pigeon	Ocyphaps lophotes	R			2004	Yes	
	Peaceful Dove	Geopelia striata	R			1996		
267	Yellow-tailed Black-Cockatoo	-				2002	Yes	
	Gang-gang Cockatoo	Callocephalon fimbriatum				2002	Yes	
	Galah	Cacatua roseicapilla				2004	Yes	
272	Long-billed Corella	Cacatua tenuirostris	U			1999	No	
271	Little Corella	Cacatua sanguinea	U			2004	Yes	
269	Sulphur-crested Cockatoo	Cacatua galerita				2004	Yes	
274	Cockatiel	Nymphicus hollandicus	?			1999	No	
254	Rainbow Lorikeet	Trichoglossus haematodus	U			2004	Yes	
256	Scaly-breasted Lorikeet Tri	choglossus chlorolepidotus	R			2000	No	
258	Musk Lorikeet	Glossopsitta concinna	U			2004	Yes	
	Little Lorikeet	Glossopsitta pusilla	U			2000	No	
	Purple-crowned Lorikeet Gla		U			1999	No	
	Australian King-Parrot	Alisterus scapularis	U			2004	Yes	
	Crimson Rosella	Platycercus elegans				2003	Yes	
	Eastern Rosella	Platycercus eximius				2004	Yes	
	Swift Parrot	Lathamus discolor	R	E	E	1994	No	
	Red-rumped Parrot	Psephotus haematonotus				2004	Yes	
	Blue-winged Parrot	Neophema chrysostoma	U			1994	No	
307	Elegant Parrot	Neophema elegans		V		1999	No	
	Pallid Cuckoo	Cuculus pallidus				2000	No	
	Brush Cuckoo	Cacomantis variolosus	U			1999	No	
	Fan-tailed Cuckoo	Cacomantis flabelliformis				2002	Yes	
	Black-eared Cuckoo	Chrysococcyx osculans	R	Ν		1982	No	
	Horsfield's Bronze-Cuckoo	Chrysococcyx basalis				2000	No	
344	Shining Bronze-Cuckoo	Chrysococcyx lucidus	TT	17		1999	No	
$\frac{248}{246}$	Powerful Owl	Ninox strenua	U	V E		2003 1986	Yes	
$\frac{246}{242}$	Barking Owl Southern Boobook	<u>Ninox connivens</u> Ninox novaeseelandiae	R	E		2002	No Yes	
<u>242</u> <u>253</u>	Sooty Owl	Tyto tenebricosa	U	v		2002	No	
	Barn Owl	Tyto alba	0	v		2000 1994	No	
	Tawny Frogmouth	Podargus strigoides				2002	Yes	
	Australian Owlet-nightjar	Aegotheles cristatus				1994	No	
	White-throated Needletail	Hirundapus caudacutus				1999	No	
	Fork-tailed Swift	Apus pacificus	R			1998	No	
	Azure Kingfisher	Alcedo azurea	R	Ν		1998	No	
	Laughing Kookaburra	Dacelo novaeguineae				2004	Yes	
	Sacred Kingfisher	Todiramphus sanctus				2001	No	
	Rainbow Bee-eater	Merops ornatus	U			1994	No	
	Dollarbird	Eurystomus orientalis	R			1983	No	
350	Superb Lyrebird	Menura novaehollandiae				1999	No	
	White-throated Treecreeper	Cormobates leucophaeus				2002	Yes	
560	Red-browed Treecreeper	Climacteris erythrops	U			1999	No	
	Brown Treecreeper	Climacteris picumnus	U	Ν		1994	No	
	Superb Fairy-wren	Malurus cyaneus				2004	Yes	
526	Southern Emu-wren	Stipiturus malachurus	U			1980	No	
565	Spotted Pardalote	Pardalotus punctatus				2004	Yes	
976	Striated Pardalote	Pardalotus striatus				2000	No	
506	Pilotbird	Pycnoptilus floccosus				1999	No	
488	White-browed Scrubwren	Sericornis frontalis				2003	Yes	
498	Chestnut-rumped Heathwren	Hylacola pyrrhopygia	R	V		1972	No	
500	Striated Fieldwren	Sericornis fuliginosus				1979	No	
<u>504</u>	· ·	Chthonicola sagittata	U	V		1998	No	
	Weebill	Smicrornis brevirostris	_			1998	No	
463	Western Gerygone	Gerygone fusca	R			1999	No	
	Г		Ē			Γ Ι		
------	---------------------------------------	---	-----	--------	------	--------------	------------	
Code	Common Name	Scientific Name		Status	-	Recency	This	
			LCC	Vic	EPBC	-	Study?	
494	Large-billed Scrubwren	Sericornis magnirostris	U			1980	No	
453	White-throated Gerygone	Gerygone olivacea	U			1977	No	
	Brown Thornbill	Acanthiza pusilla				2004	Yes	
	Buff-rumped Thornbill	Acanthiza reguloides				1999	No	
	Yellow-rumped Thornbill	Acanthiza chrysorrhoa				2000	No	
	Yellow Thornbill	Acanthiza nana				2000	No	
	Striated Thornbill	Acanthiza lineata				2004	Yes	
	Red Wattlebird Brush Wattlebird	Anthochaera carunculata				2004	Yes	
		Anthochaera chrysoptera				2004 1994	Yes No	
	Striped Honeyeater Noisy Friarbird	Plectorhyncha lanceolata Philemon corniculatus	U			1994	No	
	Little Friarbird	Philemon citreogularis	R			1972	No	
	Regent Honeyeater	Xanthomyza phrygia	R	С	Е	1994	No	
	Bell Miner	Manorina melanophrys	R	C	Е	2004	Yes	
	Noisy Miner	Manorina melanocephala				2004	Yes	
	Lewin's Honeyeater	Meliphaga lewinii				1998	No	
	Yellow-faced Honeyeater	Lichenostomus chrysops				2002	No	
	White-eared Honeyeater	Lichenostomus leucotis				2002	Yes	
619	Yellow-tufted Honeyeater	Lichenostomus melanops	U			1994	No	
625	White-plumed Honeyeater	Lichenostomus penicillatus				2002	Yes	
	Brown-headed Honeyeater	Melithreptus brevirostris				1999	No	
	White-naped Honeyeater	Melithreptus lunatus				2002	No	
	Crescent Honeyeater	Phylidonyris pyrrhoptera				1999	Yes	
	New Holland Honeyeater Ph					2004	Yes	
	-	canthorhynchus tenuirostris				2003	Yes	
	White-fronted Chat	Epthianura albifrons				1994	No	
377	Jacky Winter	Microeca fascinans				2000	No	
380		Petroica multicolor	р			2000 2000	No No	
	Red-capped Robin Flame Robin	Petroica goodenovii Petroica phoenicea	R			2000	No Yes	
	Rose Robin	Petroica rosea				1999	No	
	Pink Robin	Petroica rodinogaster	U			2000	No	
	Hooded Robin	Melanodryas cucullata	R	Ν		1994	No	
	Eastern Yellow Robin	Eopsaltria australis				2002	Yes	
443	Grey-crowned Babbler	Pomatostomus temporalis	R	Е		1995	No	
	Eastern Whipbird	Psophodes olivaceus				2002	Yes	
	-	Daphoenositta chrysoptera				2000	No	
416	Crested Shrike-tit	Falcunculus frontatus				2001	Yes	
405	Olive Whistler	Pachycephala olivacea	U			1994	No	
	Golden Whistler	Pachycephala pectoralis				2002	Yes	
	Rufous Whistler	Pachycephala rufiventris				2002	Yes	
	Grey Shrike-thrush	Colluricincla harmonica				2002	Yes	
	Black-faced Monarch	Monarcha melanopsis	R			1939	No	
	Leaden Flycatcher	Myiagra rubecula	U			1999	No	
	Satin Flycatcher	Myiagra cyanoleuca	U			2000	No	
	Restless Flycatcher	Myiagra inquieta	U			2002	Yes	
	Magpie-lark Rufous Fantail	Grallina cyanoleuca				2004	Yes No	
		Rhipidura rufifrons Rhipidura fuliginosa				1999 2003		
	Grey Fantail Willie Wagtail	Rhipidura fuliginosa Rhipidura leucophrys				2003	Yes Yes	
	Black-faced Cuckoo-shrike	Coracina novaehollandiae				2004	Yes	
	White-winged Triller	Lalage sueurii	U			1998	No	
	Olive-backed Oriole	Oriolus sagittatus	U			2000	No	
	Masked Woodswallow	Artamus personatus	R			1998	No	
	White-browed Woodswallow		R			1994	No	
	Dusky Woodswallow	Artamus cyanopterus	-			2000	Yes	
	Grey Butcherbird	Cracticus torquatus				2002	Yes	
	Pied Butcherbird	Cracticus nigrogularis	?			2002	No	
		~ ~						

TotalLtccVicEPBCStudy?705Australian MagpieGymnorhina tibicen2004Yes694Pied CurrawongStrepera graculina2003Yes697Grey CurrawongStrepera versicolor2004Yes930Australian RavenCorvus coronoides2004Yes931Australian RavenCorvus coronoides2004Yes693White-winged ChoughCorcorax melanorhamphosU1994No648Singing BushlarkMirafra javanicaR1994No648Singing BushlarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No993*SkylarkAlauda arvensis2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochmia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No996*European GreenfinchCarduelis carduelis2000NoNo697Welcome SwallowHirundo nexena2004YesS616Baitonob FiretailStagonopleura guttataRV1994No628Kurbeed SwallowCheramoeca leucosternus?1977No638White-backed SwallowCheramoeca leucosternus?1977No647Welcome SwallowHirundo nigricans2002No	Code	Common Name	Scientific Name		Status		Recency	This
694Pied CurrawongStrepera graculina2003Yes697Grey CurrawongStrepera versicolor2004Yes930Australian RavenCorvus coronoides2004Yes931Little RavenCorvus coronoides2004Yes693White-winged ChoughCorcorax melanorhamphosU1994No648Singing BushlarkMirafra javanicaR1994No648Singing BushlarkMirafra javanicaR1994No647Richard's PipitAnthus novaeseelandiae1994No647Richard's PipitAnthus novaeseelandiae2000No647Richard's PipitAnthus novaeseelandiae2002Yes994*Eurasian Tree SparrowPasser domesticus2002Yes652Diamond FiretailStagonopleura guttata?1977No652European GreenfinchCarduelis chloris2000No654MistetoebirdDicaeum hirundinaceum2000No655Mine-backed SwallowCheramocea leucosternus?1977No656Fairy MartinHirundo neoxena2002Yes657Welcome SwallowCheramocea leucosternus?1977No658White-backed SwallowCheramocea leucosternus?1977No659Tree MartinHirundo neoxena2002No659Stagonopleura guttata22000No650 <th></th> <th></th> <th></th> <th>LCC</th> <th>Vic</th> <th>EPBC</th> <th>···· · · · · · · · · · · · · · · · · ·</th> <th>Study?</th>				LCC	Vic	EPBC	···· · · · · · · · · · · · · · · · · ·	Study?
697Grey CurrawongStrepera versicolor2004Yes930Australian RavenCorvus coronoides2004Yes954Little RavenCorvus mellori2004Yes693White-winged ChoughCorcorax melanorhamphosU1994No693White-winged ChoughCorcorax melanorhamphosU1994No693Wintiged Singing BushlarkMirafra javanicaR1994No648Singing BushlarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochmia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GoldfinchCarduelis carduelis2000NoNo996*European GoldfinchCarduelis carduelis2002Yes654MistletoebirdDicaeum hirundinaceum2000No998White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No522Little GrassbirdMegalurus gram	705	Australian Magpie	Gymnorhina tibicen				2004	Yes
930Australian RavenCorvus coronoides2004Yes954Little RavenCorvors mellori2004Yes693White-winged ChoughCorcorax melanorhamphosU1994No648Singing BushlarkMirafra javanicaR1994No648Singing BushlarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*SkylarkAlauda arvensis2000No664Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No662Red-browed FinchNeochmia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GoldfinchCarduelis chloris2000No996*European GoldfinchCarduelis chloris2000No997White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo nigricans2002No360Fairy MartinHirundo nigricans2004Yes522Little GrassbirdMegalurus gramineusU2004Yes523Colanorous Re	694	Pied Currawong	Strepera graculina				2003	Yes
954Little RavenCorvus mellori2004Yes693White-winged ChoughCorcorax melanorhamphosU1994No648Singing BushlarkMirafra javanicaR1994No993*SkylarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochnia temporalis2002Yes552Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis carduelis2000No996*European GoldfinchCarduelis carduelis2000No997*European GoldfinchCarduelis carduelis2000No996*European GoldfinchCarduelis carduelis2000No997Stegomolecan guttata?1977No353Tree MartinHirundo nigricans2002Yes354White-backed SwallowCheramoeca leucosternus?1977No355Tree MartinHirundo nigricans2002No900*Red-whiskered BulbulPycnonotus jocosus1999No508Br	697	Grey Currawong	Strepera versicolor				2004	Yes
693White-winged ChoughCorcorax melanorhamphosU1994No648Singing BushlarkMirafra javanicaR1994No993*SkylarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochmia temporalis2002Yes997*European GreenfinchCarduelis chloris2000No996*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis chloris2000No997*European GoldfinchCarduelis chloris2000No998*European GoldfinchCarduelis chloris2000No997*European GoldfinchCarduelis chloris2000No998*Tee MartinHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No501Rued SonglarkCincloramphus stentoreusU2004Yes502Little GrassbirdMegalurus gramineusU2004Yes503Brown So	930	Australian Raven	Corvus coronoides				2004	Yes
648Singing BushlarkMirafra javanicaR1994No993*SkylarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochnia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2000No997*European GoldfinchCarduelis carduelis2000No998*White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo nigricans2002No359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2004Yes522Little GrassbirdMegalurus gramineusU2001No509%Red-whiskered BulbulPycnonotus jocosus1999No519Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes514SilvereyeZosterops lateralis2002No <tr< td=""><td>954</td><td>Little Raven</td><td>Corvus mellori</td><td></td><td></td><td></td><td>2004</td><td>Yes</td></tr<>	954	Little Raven	Corvus mellori				2004	Yes
993*SkylarkAlauda arvensis2000No647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochnia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis chroirs2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No357Welcome SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nieri U2000No909*Red-whiskered BulbulPycnontus jocosus1999No522Little GrassbirdMegalurus gramineusU2004Yes522Little GrassbirdMegalurus gramineusU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2004Yes522Little GrassbirdMegalurus gramineusU1999No525Golden-headed CisticolaCisticola exilis2004Yes	693	White-winged Chough	Corcorax melanorhamphos	U			1994	No
647Richard's PipitAnthus novaeseelandiae1994No995*House SparrowPasser domesticus2002Yes994*Eurasian Tree SparrowPasser montanusU2000No653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochmia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No955White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2002No359Tree MartinHirundo nigricans2002No990*Red-whiskered BulbulPycnonotus jocosus1999No522Little GrassbirdMegalurus gramineusU2001No508Brown SonglarkCincloramphus mathewsiU1994No525Golden-headed CisticolaCisticola exilis2002Yes579Basian ThrushZoothera lunulata1999No508Brown SonglarkCincloramphus mathewsiU1994No525Golden-headed CisticolaCisticola exilis2002Yes579Basian ThrushZoothera lunulata1999No </td <td>648</td> <td>Singing Bushlark</td> <td>Mirafra javanica</td> <td>R</td> <td></td> <td></td> <td>1994</td> <td>No</td>	648	Singing Bushlark	Mirafra javanica	R			1994	No
995 *House SparrowPasser domesticus2002Yes994 *Eurasian Tree SparrowPasser montanusU2000No653 Zebra FinchTaeniopygia guttata?1977No662 Red-browed FinchNeochmia temporalis2002Yes652 Diamond FiretailStagonopleura guttataRV1994No997 *European GreenfinchCarduelis caluelis2000No996 *European GoldfinchCarduelis carduelis2000No996 *European GoldfinchCarduelis carduelis2000No358 White-backed SwallowCheramoeca leucosternus?1977No357 Welcome SwallowHirundo nigricans2002No360 Fairy MartinHirundo nigricans2002No990 *Red-whiskered BulbulPycnonotus jocosus1999No522 Little GrassbirdMegalurus gramineusU2001No509 Rufous SonglarkCincloramphus mathewsiU1994No525 Golden-headed CisticolaCisticola exilis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2004Yes574 SilvereyeZosterops lateralis2004Yes574 Si	993	*Skylark	Alauda arvensis				2000	No
994 *Eurasian Tree SparrowPasser montanusU2000No653 Zebra FinchTaeniopygia guttata?1977No662 Red-browed FinchNeochmia temporalis2002Yes652 Diamond FiretailStagonopleura guttataRV1994No997 *European GreenfinchCarduelis chloris2000No996 *European GoldfinchCarduelis carduelis2002Yes564 MistletoebirdDicaeum hirundinaceum2000No358 White-backed SwallowCheramoeca leucosternus?1977No357 Welcome SwallowHirundo neoxena2002No360 Fairy MartinHirundo nigricans2002No360 Fairy MartinHirundo nigricans2002No361 GasbirdMegalurus gramineusU2004Yes522 Little GrassbirdMegalurus gramineusU2001No509 Rufous SonglarkCincloramphus mathewsiU1999No525 Golden-headed CisticolaCisticola exilis2004Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis1999No525 Golden-headed CisticolaCisticola exilis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis2002Yes574 SilvereyeZosterops lateralis1999No599 *Com	647	Richard's Pipit	Anthus novaeseelandiae				1994	No
653Zebra FinchTaeniopygia guttata?1977No662Red-browed FinchNeochmia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2002No359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZoster	995	*House Sparrow	Passer domesticus				2002	Yes
662Red-browed FinchNeochnia temporalis2002Yes652Diamond FiretailStagonopleura guttataRV1994No997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2002No360Fairy MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1994No525Golden-headed CisticolaCisticola exilis2002Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZosterops lateralis2004Yes574SilvereyeZosterops lateralis2004Yes575Song ThrushZuothera lunul	994	*Eurasian Tree Sparrow	Passer montanus	U			2000	No
652Diamond FiretailStagonopleura guttata guttataRV1994No997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes574SilvereyeZosterops lateralis2002Yes577Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	653	Zebra Finch	Taeniopygia guttata	?			1977	No
997*European GreenfinchCarduelis chloris2000No996*European GoldfinchCarduelis carduelis2002Yes564MistletoebirdDicaeum hirundinaceum2000No358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2002Yes574SilvereyeZosterops lateralis2002Yes575Song ThrushZoothera lunulata1999No991 <td*common blackbird<="" td="">Turdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes</td*common>	662	Red-browed Finch	Neochmia temporalis				2002	Yes
996 *European GoldfinchCarduelis carduelis2002Yes564 MistletoebirdDicaeum hirundinaceum2000No358 White-backed SwallowCheramoeca leucosternus?1977No357 Welcome SwallowHirundo neoxena2004Yes359 Tree MartinHirundo nigricans2002No360 Fairy MartinHirundo arielU2000No990 *Red-whiskered BulbulPycnonotus jocosus1999No524 Clamorous Reed WarblerAcrocephalus stentoreusU2001No509 Rufous SonglarkCincloramphus mathewsiU1999No508 Brown SonglarkCincloramphus cruralisU1994No525 Golden-headed CisticolaCisticola exilis2002Yes574 SilvereyeZosterops lateralis2002Yes779 Bassian ThrushZoothera lunulata1999No991 *Common BlackbirdTurdus merula2004Yes992 *Song ThrushTurdus philomelosU2004Yes999 *Common StarlingSturnus vulgaris2004Yes	<u>652</u>	Diamond Firetail	Stagonopleura guttata	R	V		1994	No
564MistletoebirdDicaeum hirundinaceum2000No358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo nigricans2000No990*Red-whiskered BulbulPycnontus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	997	*European Greenfinch	Carduelis chloris				2000	No
358White-backed SwallowCheramoeca leucosternus?1977No357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2002Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes999*Common StarlingSturnus vulgaris2004Yes	996	*European Goldfinch	Carduelis carduelis				2002	Yes
357Welcome SwallowHirundo neoxena2004Yes359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2002Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes999*Common StarlingSturnus vulgaris2004Yes	564	Mistletoebird	Dicaeum hirundinaceum				2000	No
359Tree MartinHirundo nigricans2002No360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes999*Common StarlingSturnus vulgaris2004Yes	358	White-backed Swallow	Cheramoeca leucosternus	?			1977	No
360Fairy MartinHirundo arielU2000No990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes999*Common StarlingSturnus vulgaris2004Yes	357	Welcome Swallow	Hirundo neoxena				2004	Yes
990*Red-whiskered BulbulPycnonotus jocosus1999No524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	359	Tree Martin	Hirundo nigricans				2002	No
524Clamorous Reed WarblerAcrocephalus stentoreusU2004Yes522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	360	Fairy Martin	Hirundo ariel	U			2000	No
522Little GrassbirdMegalurus gramineusU2001No509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	990	*Red-whiskered Bulbul	Pycnonotus jocosus				1999	No
509Rufous SonglarkCincloramphus mathewsiU1999No508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	524	Clamorous Reed Warbler	Acrocephalus stentoreus	U			2004	Yes
508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	522	Little Grassbird	Megalurus gramineus	U			2001	No
508Brown SonglarkCincloramphus cruralisU1994No525Golden-headed CisticolaCisticola exilis2004Yes574SilvereyeZosterops lateralis2002Yes779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	509	Rufous Songlark	Cincloramphus mathewsi	U			1999	No
574 SilvereyeZosterops lateralis2002Yes779 Bassian ThrushZoothera lunulata1999No991 *Common BlackbirdTurdus merula2004Yes992 *Song ThrushTurdus philomelosU2004Yes999 *Common StarlingSturnus vulgaris2004Yes	508	Brown Songlark		U			1994	No
779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	525	Golden-headed Cisticola	Cisticola exilis				2004	Yes
779Bassian ThrushZoothera lunulata1999No991*Common BlackbirdTurdus merula2004Yes992*Song ThrushTurdus philomelosU2004Yes999*Common StarlingSturnus vulgaris2004Yes	574	Silvereye	Zosterops lateralis				2002	Yes
992 *Song ThrushTurdus philomelosU2004Yes999 *Common StarlingSturnus vulgaris2004Yes	779	Bassian Thrush					1999	No
999 *Common StarlingSturnus vulgaris2004Yes	991	*Common Blackbird	Turdus merula				2004	Yes
č	992	*Song Thrush	Turdus philomelos	U			2004	Yes
998 *Common MynaAcridotheres tristis2004Yes	999	*Common Starling	Sturnus vulgaris				2004	Yes
	998	*Common Myna	Acridotheres tristis				2004	Yes

Mammals

Code	Common Name	ame Scientific Name		Status	;	Recency	This
			LCC Vic EPBC			Study?	
1001	Platypus	Ornithorhynchus anatinus	U	_	_	2002	No
1003	Short-beaked Echidna	Tachyglossus aculeatus				2003	Yes
1028	Agile Antechinus	Antechinus agilis				1994	No
1033	Dusky Antechinus	Antechinus swainsonii				1997	No
1092	Southern Brown Bandicoot	Isoodon obesulus obesulus	besulus N E		E	1979	No
1165	Common Wombat	Vombatus ursinus				2002	No
1162	Koala	Phascolarctos cinereus	U			2002	No
1115	Mountain Brushtail Possum	Trichosurus caninus				1980	No
1113	Common Brushtail Possum	Trichosurus vulpecula				2003	Yes
1136	Yellow-bellied Glider	Petaurus australis	U			1987	No
1138	Sugar Glider	Petaurus breviceps				2004	No
1129	Common Ringtail Possum	Pseudocheirus peregrinus				2003	Yes
1133	Greater Glider	Petauroides volans				1987	No
1147	Feathertail Glider	Acrobates pygmaeus	U			1980	No
1265	Eastern Grey Kangaroo	Macropus giganteus	U			2003	Yes

Code	Common Name	Scientific Name		Status	;	Recency	This
			LCC	Vic	EPBC	y	Study?
1242	Black Wallaby	Wallabia bicolor				2003	Yes
1280	Grey-headed Flying-fox	Pteropus poliocephalus	R	V	V	2002	No
1324	White-striped Freetail Bat	Tadarida australis				2001	No
1349	Gould's Wattled Bat	Chalinolobus gouldii	U			1999	No
1351	Chocolate Wattled Bat	Chalinolobus morio				1988	No
1372	Eastern False Pipistrelle	Falsistrellus tasmaniensis	U			1988	No
<u>1341</u>	Common Bent-wing Bat	Miniopterus schreibersii (grp)	U	CD†		2003	No
1335	Lesser Long-eared Bat	Nyctophilus geoffroyi				1998	No
1381	Large Forest Bat	Vespadelus darlingtoni				1994	No
1378	Southern Forest Bat	Vespadelus regulus				1999	No
1379	Little Forest Bat	Vespadelus vulturnus				1999	No
1415	Water Rat	Hydromys chrysogaster				2002	No
1438	Broad-toothed Rat	Mastacomys fuscus	U	Ν		1994	No
1412	*House Mouse	Mus musculus				2003	No
1395	Bush Rat	Rattus fuscipes				2001	No
1398	Swamp Rat	Rattus lutreolus				1983	No
1409	*Brown Rat	Rattus norvegicus	R			1997	No
1408	*Black Rat	Rattus rattus	U			2000	No
1836	*Dog	Canis familiaris				1994	Yes
1532	*Red Fox	Canis vulpes				2004	Yes
1536	*Cat (feral)	Felis catus				1994	Yes
1514	*Pig (feral)	Sus scrofa	R			1979	No
1511	*Brown Hare	Lepus capensis	U			2002	Yes
1510	*European Rabbit	Oryctolagus cuniculus				2004	Yes

[†] 'CD' stands for 'Conservation Dependent' and means that the species is the focus of a specific conservation program, the cessation of which would result in the species becoming vulnerable, endangered or critically endangered within a period of five years.

Frogs

Code	Common Name	Scientific Name		Status		Recency	This
			LCC	Vic	EPBC		Study?
3134	Common Froglet	Crinia signifera			_	2002	Yes
3033	Victorian Smooth Froglet	Geocrinia victoriana				2003	No
3058	Southern Bullfrog	Limnodynastes dumerilii				2002	Yes
3061	Striped Marsh Frog	Limnodynastes peronii	U			2002	No
3918	Spotted Marsh Frog Lin	nnodynastes tasmaniensis SCR				2002	No
3103	Haswell's Froglet	Paracrinia haswelli	U			1981	No
3903	Southern Brown Tree Frog	Litoria ewingii (southern)				2003	Yes
3183	*Eastern Dwarf Tree Frog	Litoria fallax				2002	No
3204	Peron's Tree Frog	Litoria peronii	U			2003	No
<u>3207</u>	Warty Bell Frog (Growling	Grass Frog) Litoria raniformis	U	Е	V	1999	No
3906	Verreaux's Tree Frog	Litoria verreauxii verreauxii				2002	No

Code	Common Name	Scientific Name		Status	;	Recency	This
			LCC	Vic	EPBC		Study?
2017	Common Long-necked Tortois	e Chelodina longicollis				2002	Yes
2194	Tree Dragon	Amphibolurus muricatus				1987	No
2283	Tree Goanna (or Lace Monitor) Varanus varius	U	V		1991	No
2682	Eastern Three-lined Skink	Bassiana duperreyi				1994	No
<u>2407</u>	Swamp Skink	Egernia coventryi	U	V		2000	No
2408	Cunningham's Skink	Egernia cunninghami	U			1984	No
2938	Black Rock Skink Eg	ernia saxatilis intermedia				1989	No
2430	White's Skink	Egernia whitii (group)	U			1891	No
2986	unidentified water skink	Eulamprus sp.				1934	No
2450	Delicate Skink	Lampropholis delicata				2000	No
2451	Garden Skink	Lampropholis guichenoti				2003	No
2444	McCoy's Skink	Nannoscincus maccoyi				2000	No
2462	Metallic Skink	Niveoscincus metallicus				1998	No
2994	Southern Grass Skink Ps	eudemoia entrecasteauxii				1999	No
2683	Glossy Grass Skink	Pseudemoia rawlinsoni	U	Ν		1994	No
2452	Weasel Skink	Saproscincus mustelinus	U			2000	No
2578	Blotched Blue-tongued Lizard	Tiliqua nigrolutea				2002	Yes
2580	Common Blue-tongued Lizard	Tiliqua scincoides				1991	No
2973	Lowland Copperhead	Austrelaps superbus				2001	Yes
2665	White-lipped Snake	Drysdalia coronoides	U			1989	No
2681	Tiger Snake	Notechis scutatus				2001	No
2650	Eastern Small-eyed Snake Rhi	noplocephalus nigrescens	U			1984	No

Reptiles

Fishes

Code	Common Name	mmon Name Scientific Name		- 4	Recency	This
			Vic	EPBC		Study?
4032	Broadfin Galaxias	Galaxias brevipinnis	_	_	2002	No
4035	Common Galaxias	Galaxias maculatus			2001	No
<u>4041</u>	Dwarf Galaxias	Galaxiella pusilla	V	V	1998	No
4101	Southern Pigmy Perch	Nannoperca australis			1997	No
4043	*Goldfish	Carassius auratus			2002	Yes
4046	*Roach	Rutilus rutilus			1996	No
4165	Flatheaded Gudgeon	Philypnodon grandiceps			2002	Yes
4002	Pouched Lamprey	Geotria australis			1985	No
4015	Shortfin Eel	Anguilla australis			2002	No
4026	*Rainbow Trout	Oncorhynchus mykiss			1997	No
4028	*Brown Trout	Salmo trutta			1996	No
4048	*Oriental Weatherloach	Misgurnus anguillicaudatus			1997	No
4069	*Mosquitofish	Gambusia holbrooki			2004	Yes
4105	*Redfin	Perca fluviatilis			1996	No

Code	Common Name	Scientific Name	^ (- 4	Recency	This
			Vic	EPBC		Study?
	Symmomus Skipper T	rapezites symmomus symmomus			2002	No
	Barred (or Dispar) Skipp	ber Dispar compacta			2002	No
	Doubleday's Skipper	Toxidia doubledayi			2002	No
	Spotted Skipper	Hesperilla ornata ornata			2002	No
	Bright Shield-skipper	Signeta flammeata			2002	No
	Tasmanica Skipper	Pasma tasmanicus	†		2002	No
	Banded Grass-skipper	Toxidia parvulus			2002	No
	Yellow-banded Dart	Ocybadistes walkeri sothis			2002	No
	White Grassdart	Taractrocera papyria papyria			2002	No
	Australian Painted Lady	Vanessa kershawi			2002	Yes
	Australian Admiral	Vanessa itea			2002	Yes
	Meadow Argus	Junonia villida calybe			2002	No
	Common Brown	Heteronympha merope merope			2002	Yes
	Shouldered Brown	Heteronympha penelope			2002	No
	Spotted Brown Heteron	nympha paradelpha paradelpha			recent	No
	Swordgrass Brown	Tisiphone abeona			2002	Yes
	Eastern Ringed Xenica	Geitoneura acantha			2002	Yes
	Klug's Xenica	Geitoneura klugii			2002	Yes
	*Cabbage White	Pieris rapae rapae			2002	Yes
	Imperial White	Delias harpalyce			2003	Yes
	Caper White	Belenois java teutonia			2002	No
	Wood White	Delias aganippe			2002	No
<u>5007</u>	Small Ant Blue	Acrodipsas myrmecophila	Е		1942	No
	Doublespotted Lineblue	Nacaduba biocellata biocellata			2002	No
	Long-tailed Pea-blue	Lampides boeticus			2002	No
	Common Imperial Blue	Jalmenus evagora			2002	Yes
	Common Grass-blue	Zizina labradus labradus			2002	Yes
	Silky Hairstreak	Pseudalmenus chlorinda			2001	No

Butterflies

[†] The Department of Sustainability & Environment regards the status of the Tasmanica Skipper as insufficiently known to conclude whether or not it is threatened.

Notable Other Invertebrates

Both species below are regarded by the Department of Sustainability & Environment (2003b) as having an 'Insufficiently Known' conservation status, and possibly rare or threatened. Neither was seen by the author but both are quite reliable.

Code	Common Name	Scientific Name	Recency	This Study?
5016	Caddisfly	Plectrotarsus gravenhorstii	1943	No
<u>5029</u>	Dandenong Freshwater Amphipod	Austrogammarus australis	1999	No

Appendix E – Example Bushland Neighbour Policy

22 LOCAL PLANNING POLICIES

22.09 BUSHLAND NEIGHBOURS

This policy applies to all properties that share a common boundary with the following sites of biological significance recognised under Schedule 1 of the Environmental Significance Overlay:

- W.G. Morris Reserve, Wantirna;
- Flamingo Reserve, Wantirna South (southern and western boundaries);
- Redcourt Reserve, Scoresby;
- ...

and which are, or may become, subject to fire risk through proximity to native vegetation in the adjoining site of biological significance.

22.09-1 Policy Basis

This policy:

- Implements objectives in the SPPF, particularly the Net Gain policy and the statement, 'Responsible authorities should ensure that the siting of new buildings and works minimises the removal or fragmentation of native vegetation'.
- Responds to one of the threats to biodiversity and sites of biological significance identified in Clause *??* of the MSS. [to be inserted into the MSS]

Buildings that encroach too close to neighbouring bushland can become at risk from bushfire. There is often too little space to create a fire buffer on the same property as the building, leading to pressure for fire prevention works that ecologically damage the adjoining bushland by removal, fragmentation or weed invasion. It is preferable to prevent the encroachment and avoid the environmental damage.

22.09-2 Objectives

- To avoid encroachment of buildings so close to bushland in certain recognised sites of biological significance as to create an unreasonable fire risk.
- To save such bushland from pressure for ecologically harmful fire prevention works that may result from construction of buildings in close proximity.
- To favour fire protection measures on private land that is not biologically significant rather than within significant native vegetation.
- To achieve a net gain in habitat by seeking offsets for any ecological damage done to native vegetation as a result of providing fire protection for permitted buildings and subdivisions.

22.09-3 Policy

It is policy to:

- Refuse construction of buildings if their proximity to native vegetation in a nominated site of biological significance would create a bushfire risk so great as to require an increase in fire prevention work within the site of biological significance.
- Require management activities or installation of fire protection equipment in association with construction of buildings that would otherwise offend the policy above.
- Require that subdivision of allotments adjoining the nominated sites of significance must provide an adequate buffer for fire protection without materially harming native vegetation.
- Impose offset conditions that achieve a net gain in habitat if loss of native vegetation is unavoidable.

22.09-4 Decision guidelines

Before deciding on an application, the responsible authority will consider:

- The degree to which the objectives set out in Clause 22.09-2 above are expected to be achieved, and the degree of confidence in that expectation.
- The proximity of the proposed building (or potential building sites, in the case of subdivision) to significant native vegetation;
- For subdivision applications, the benefits offered by the use of building envelopes for meeting the objectives set out in Clause 22.09-2.
- The expected change in fire risk that would result from the proposed building or subdivision;
- The degree to which building construction will be accompanied by management activities or equipment installation on the same property that would reduce fire risk;
- The possible ecological damage that may be done to native vegetation by any increase in fire prevention work that would have to be done in the adjoining site of biological significance.
- The adequacy of any measures that compensate for any loss of native vegetation.

Appendix F – Suggested ESO1 Schedule

The following suggested wording for a schedule to the Knox Planning Scheme should be considered in conjunction with the basic provisions for the Environmental Significance Overlay that appear as Clause 42.01 of the scheme.

SCHEDULE 1 TO THE ENVIRONMENTAL SIGNIFICANCE OVERLAY

Shown on the planning scheme map as ESO1.

SITES OF BIOLOGICAL SIGNIFICANCE

1.0 Statement of environmental significance

The sites covered by this schedule have been identified as sites of biological significance in Volume 2 of the report, *'Sites of Biological Significance in Knox'* by G.S. Lorimer (published by Knox City Council, 2004). Their protection and appropriate management is of particular importance for the maintenance of Victoria's biodiversity. Biodiversity has intrinsic values and it also provides for human needs ('ecosystem services'), including the contribution that it makes to the character and amenity of parts of Knox.

The report just cited should be consulted for details of the attributes that make each site environmentally significant, and the associated level of significance (Local, Regional or State) according to the criteria of the Department of Sustainability & Environment.

A high proportion of sites are of State significance because they contain patches of remnant vegetation belonging to one or more Ecological Vegetation Classes (EVCs) that are regionally Endangered or Vulnerable. Conservation of Victoria's biodiversity requires a high level of protection for remaining examples of regionally Vulnerable or Endangered EVCs, even in the case of rather small patches such as some of the sites that come under this schedule.

Other environmentally significant attributes that are present in various sites are:

- Plant species that are threatened in Knox or more widely;
- Recently recorded native fauna species (including invertebrates) that are uncommon, rare or threatened in the Melbourne area or more widely (according to the Department of Sustainability & Environment's 'Advisory List of Threatened Vertebrate Fauna in Victoria – 2003', the Land Conservation Council's 'Melbourne Area District 2 Review Descriptive Report' (1991) and expert advice about invertebrates);
- Habitat features, such as tree hollows, that are likely to be used by such fauna;
- Streams or wetlands that retain some natural ecological function, including habitat for native fish, Platypus, invertebrates or other fauna;
- A role in dispersal of wildlife, pollen or plant propagules, through acting as an ecological corridor or a 'stepping stone' in a network of sites;
- In a few cases, plants of exceptional size or age for their species.

While most of these attributes relate to remnant native vegetation in whole or in part, other vegetation is also significant at some sites: for example, dead trees or mature planted trees used by fauna, or even the open pasture along Dobsons Creek in The Basin, where migratory birds such as Egrets congregate. In some cases, there are important features unrelated to vegetation, such as stream flow regimes or the frequency and depth of floodwaters that may be needed by certain fauna such as the Dwarf Galaxias (a Vulnerable fish species).

In many cases, a site contains one or more areas that are not environmentally significant when taken in isolation from the rest of the site. These sections are included under this overlay schedule because their use, management and development potential needs to be considered in the context of the site as a whole. This includes any current or potential roles in providing compatible land use adjoining the area(s) of higher environmental significance, such as:

- Providing an ecological buffer;
- Providing a buffer for fire safety;
- Providing management access that does not harm the more significant part of the site; and
- Inhibiting the ingress of nutrients, soil and weed seeds into the significant part of the site.

2.0 Environmental objective to be achieved

- To protect and to maintain or improve the condition and viability of habitats, ecological communities, flora and fauna, genetic diversity and aquatic systems of the sites, as identified in '*Sites of Biological Significance in Knox*' (Lorimer 2004) and summarised above, and as may emerge from subsequent investigations or discoveries. This includes both biological (living and dead) and physical components.
- To ensure that any use, development or management of land within and adjacent to areas of biological significance are compatible with the long-term maintenance and conservation of the sites' significant attributes.
- To maintain the integrity of the sites through protection from:
 - Removal of native understorey and overstorey vegetation;
 - Removal of planted, dead or fallen trees in cases where it would adversely affect native fauna that rely on the trees (e.g. for cover, food, nesting, roosting, hunting or lookout sites);
 - Displacement of native vegetation or fauna by environmental weeds;
 - Pest animals (including domestic animals such as cats and dogs);
 - Fragmentation of habitat;
 - ^a Increased need for ecologically harmful fire prevention work;
 - ^a Alteration to the natural flow and temperature regimes of streams and wetlands;
 - Degradation of native riparian vegetation;
 - ^a Input of sediment, nutrients and other pollutants into streams and water bodies; and
 - ^a Changes in flooding patterns that would be adverse to native flora and fauna.
- To provide for adequate fire protection measures with no, or minimum, adverse environmental impacts, e.g. by leaving a firebreak between native vegetation and vulnerable assets, not within the native vegetation.
- To implement the *Port Phillip and Westernport Native Vegetation Plan* and the Victorian government's policy of achieving 'Net Gain' in the quantity and quality of native vegetation and habitat.
- To reduce the level of threat faced by species of flora or fauna that are threatened with extinction from Knox, including those plants listed by Lorimer (2004) as Vulnerable, Endangered or Critically Endangered in Knox;
- To protect and strengthen ecological corridors and 'stepping stones' that assist dispersal of wildlife, pollen and plant propagules across the landscape;
- To protect the important contributions that sites of biological significance make to the character and identity of Knox.

3.0 Permit requirement

For the purpose of this schedule, removal or destruction of vegetation is taken to include causing the death of plants by burying, smothering, burning or grazing them or draining a wetland or water body upon which they are reliant, as well as more obvious methods.

A permit is not required:

- To carry out works within a road reservation for maintenance of the road or for maintenance of a utility service for the transmission of water, sewage, gas, electricity, electronic communications or the like, provided that in all cases, any removal or destruction of native vegetation is the minimum necessary.
- To construct, replace or maintain a fence unless it requires removal, destruction or lopping of native vegetation that is not exempted below.

- To undertake development, works or burning which are carried out as part of a management plan approved by the responsible authority specifically to enhance the site's biologically significant attributes.
- For activities conducted on public land by or on behalf of the Department of Sustainability & Environment or its successors under the relevant provisions of the *National Parks Act 1975*, the *Wildlife Act 1975*, the *Fisheries Act 1995* or the *Forest Act 1958*.
- To remove, destroy or lop any vegetation that is:
 - Not native vegetation, unless it includes a tree with a girth exceeding one metre when measured at a height of 1.3 metres above ground level^{*}.
 - Sweet Pittosporum (*Pittosporum undulatum*).
 - Dead or diseased as a result of natural circumstances or competition with weeds, and has been assessed as being suitable for removal by an authorised officer of the responsible authority.
 - ^o Within two metres of a dwelling or within two metres of an outbuilding ancillary to a dwelling.
 - The minimum extent necessary to maintain utility services for the transmission of water, sewage, gas, electricity, electronic communications or the like, provided that the removal, destruction or lopping is undertaken in consultation with the responsible authority.
 - The minimum amount necessary for the construction, replacement or maintenance of a fence provided that the vegetation is within one metre of a title boundary and does not include removal of any tree trunk with a girth of more than one metre when measured at a height of 1.3 metres above ground level.
 - Seedlings or regrowth less than three years old and the land is being maintained for established pasture, crops or garden.
 - Woody plants on an existing dam wall.
 - Grass species (i.e. in the botanical family Poaceae) that are to be removed, grazed or cut in association with an existing residential or permitted use or part of an existing farming operation.
 - Required to be pruned or lopped (but not removed) as part of normal horticultural practice for the species.

4.0 Application requirements

An application for a permit to do nothing other than remove, destroy or lop non-native vegetation (i.e. trees with trunk girths greater than one metre) must be accompanied by a scaled plan of the property that shows:

- Property boundaries;
- The nearest road(s);
- Existing development on the site;
- The location, species, trunk girth and condition of each tree to be removed, destroyed or lopped; and
- The location of any watercourse, wetland, water body or drainage line beneath the crowns of the trees;

and an explanation of:

- The reason(s) for the removal, destruction or lopping; and
- Any proposed actions to compensate for the loss of the tree canopy or other habitat values.

Applications for all other permits under this schedule should be accompanied by a report that considers the impacts of the proposal that may occur within a period of ten years from commencement, on the subject land or elsewhere. The report must:

(a) Detail all native vegetation, habitat, threatened communities, threatened EVCs, watercourses, water bodies, drainage lines, hydrology or other features of environmental significance that might be reasonably expected to be affected by the proposal;

^{*} Note that even environmental weeds such as a Monterey Pine may have landscape or habitat values when they are large, and replacement planting may be required as a condition of permit (perhaps prior to the target tree's removal, destruction or lopping).

- (b) State the population sizes of any indigenous plant species affected by the proposal that are listed in Appendix B of the report by Lorimer (2004) as being Vulnerable, Endangered or Critically Endangered in Knox or more widely, or that were not recognised in that report as being present in Knox;
- (c) Predict the nature and magnitude of the proposal's impacts on the items in (a) and (b) above, together with an indication of the potential for the impacts to turn out worse than those predicted;
- (d) Explain why any adverse effects cannot be avoided or reduced in extent;
- (e) Indicate any proposed actions to compensate for predicted adverse effects;
- (f) Indicate whether the site or its surroundings require protection from bushfire and if so, how this is to be achieved with no, or minimum, adverse environmental impact;
- (g) Explain how the proposal is consistent with the SPPF, the LPPF and the zone and overlay provisions (including the decision guidelines below);

and be accompanied by one or more scaled and dimensioned plans that show:

- Property boundaries;
- The nearest road(s);
- Existing development on the site;
- Existing fences;
- The locations of any items mentioned in (a), (b) or (e) above; and
- The location, species, trunk girth and condition of each tree to be removed, destroyed or lopped, excluding trees whose trunk girth is less than one metre.

5.0 Referral of applications

An application that affects^{*}:

- More than five trees; or
- A total of more than 200 m² of native vegetation; or
- A species listed by the Department of Sustainability & Environment as rare or threatened in Victoria

must be referred to the Department of Sustainability & Environment under Section 55 of the Act for advice regarding the potential impacts of the proposal and actions proposed to avoid, minimise or mitigate those impacts.

6.0 Decision guidelines

Before deciding on an application, the responsible authority must consider:

- Potential on-site and off-site impacts on habitat values, potential habitat values and other features of environmental significance discussed in Section 1.0 above.
- The degree to which the environmental objective set out in Section 2.0 above is expected to be achieved, and the degree of confidence in that expectation.
- · Potential impacts on weeds, including by soil disturbance or due to runoff.
- Potential impacts on the site's environmentally significant values due to changes in hydrology of soil, watercourses, water bodies, wetlands or drainage lines.
- The expected change in fire risk that would result from the proposal;
- The possible ecological damage that may be done to native vegetation by any increase in fire prevention work that would have to be done as a result of the proposal.
- The conservation requirements of threatened species, community or EVC on the site, including (but not limited to) those in recovery plans or action statements.

^{*} These criteria are indicative only and should be negotiated with the Department of Sustainability & Environment prior to exhibition of an amendment, if this schedule is to be introduced.

- Whether there are statutory requirements under the *Environment Protection and Biodiversity Conservation Act 1999* or the *Flora and Fauna Guarantee Act 1988*.
- Conformity with the Port Phillip and Westernport Native Vegetation Plan.
- The results of any flora or fauna survey and assessment of the biological values of the land and consideration of whether the survey and assessment has been adequately completed under appropriate seasonal conditions, sufficiently recently and by suitably qualified personnel.
- The reason for the proposed actions and the practicality of any alternative options that would incur less adverse effects on vegetation, hydrology or other habitat components.
- Whether appropriate environmental restitution is proposed (e.g. conformity with the Net Gain objectives of the Native Vegetation Framework) and the likelihood of any proposed restitution measures to be successful over a ten year span.
- If the proposal threatens the existence of a plant species that the responsible authority regards as rare or threatened in Knox, the benefit of requiring as a permit condition that the plant be relocated to somewhere more secure.
- Whether the proposal may reduce the prospects or opportunities for ecological restoration or enhancement of the site.
- The conservation and enhancement of the area's landscape values.
- The usefulness of erecting a fence (temporary or permanent) to protect retained vegetation or aquatic environments from movements of machinery, vehicles or heavy foot traffic associated with the proposal.
- The usefulness of installing a drain uphill from environmentally significant areas to intercept and divert runoff or subsoil water that may otherwise cause harm.
- For subdivision applications, the usefulness of imposing conditions on lot sizes, lot boundaries, road network, open space, building envelopes, drainage or effluent disposal sites to better protect the significant values of the site.
- The views of any appropriate committee or authority.

7.0 References and information sources

- *'Sites of Biological Significance in Knox'* by G.S. Lorimer, published by Knox City Council, 2004, and references cited therein.
- *'Port Phillip and Westernport Native Vegetation Plan'*, published by the Department of Sustainability & Environment 2004 and updated from time to time.
- *'Freshwater Ecosystems: Biodiversity Management Issues'*, brochures published by the Department of Natural Resources & Environment, 2001, or as updated from time to time.
- 'Advisory List of Rare or Threatened Plants in Victoria 2003' and its successors, published by the Department of Sustainability & Environment.
- 'Advisory List of Threatened Vertebrate Fauna in Victoria 2003' and its successors, published by the Department of Sustainability & Environment.
- Lists of regionally significant fauna in 'Melbourne Area District 2 Review Descriptive Report', published by the Land Conservation Council (1991).
- The BioSites database of the Department of Sustainability & Environment, as updated from time to time.
- Schedules 2 and 3 to the Flora and Fauna Guarantee Act 1988.

Appendix G – Suggested ESO2 Schedule

The following suggested wording for a schedule to the Knox Planning Scheme should be considered in conjunction with the basic provisions for the Environmental Significance Overlay that appear as Clause 42.01 of the scheme.

SCHEDULE 2 TO THE ENVIRONMENTAL SIGNIFICANCE OVERLAY

Shown on the planning scheme map as ESO2.

DANDENONG RANGES FOOTHILLS

1.0 Statement of environmental significance

This schedule covers an area whose environmental significance is discussed in detail in Volume 2 of the report, *'Sites of Biological Significance in Knox'* by G.S. Lorimer (published by Knox City Council, 2004), under the heading of Site 100.

The area abuts the Dandenong Ranges National Park and many other identified sites of biological significance, and it has more than a dozen other identified sites of biological significance embedded within it. It also has a higher density of large trees than the rest of Knox, including remnant indigenous trees. These characteristics result in extensive dispersal of native birds, insects, pollen and seeds through the area. This dispersal is important for the landscape-scale maintenance of biodiversity in the area.

The tree canopy and shrubs that occur along the many creeks and drainage lines that flow through the area are important for maintaining the aquatic ecosystems and water quality.

The presence of the vegetation and the associated wildlife (particularly birds) adds greatly to the amenity and character of the area.

In these ways, the area covered by this schedule plays an important role as an ecological buffer zone and for providing ecosystem services, even though it is not of great biological significance when taken in isolation.

Most of the remnant native vegetation in the area belongs to, or is derived from, Ecological Vegetation Classes (EVCs) that are regionally Endangered or Vulnerable. Lorimer (2004) also identifies the presence of significant flora and fauna species.

2.0 Environmental objective to be achieved

- To protect and to maintain or improve the condition and viability of remnant native vegetation and aquatic systems within and adjacent to the area covered by this schedule.
- To avoid any use, development or management of land that is likely to compromise:
 - ^a The long-term conservation of biologically significant areas, on-site or off-site; or
 - [•] The movement of fauna, pollen or plant propagules out of, or between, biologically significant areas; or
 - ^a Remnant patches of regionally threatened EVCs or communities;
 - The security of species of flora or fauna that are threatened in Knox or more widely, on-site or offsite; or
 - ^a Opportunities for future environmental restoration that may strengthen wildlife corridors or the ecological buffering capacity of the area.
- To provide for adequate fire protection measures with no, or minimum, adverse environmental impacts, e.g. by leaving a firebreak between native vegetation and vulnerable assets, not within the native vegetation.

- To maximise the continuity of vegetation used by native fauna as habitat or for passage, particularly between identified sites of significance, through protection from:
 - Removal of native understorey and overstorey vegetation;
 - Removal of large, living trees that are not native vegetation;
 - Displacement of native vegetation by environmental weeds;
 - Fragmentation of habitat;
 - ^D Increased need for ecologically harmful fire prevention work;
 - ^a Alteration to the natural flow and temperature regimes of streams and wetlands;
 - Degradation of native riparian vegetation; and
 - ^a Input of sediment, nutrients and other pollutants into streams and water bodies.
- To implement the *Port Phillip and Westernport Native Vegetation Plan* and the Victorian government's policy of achieving 'Net Gain' in the quantity and quality of native vegetation and habitat.
- To reduce the level of threat faced by species of flora or fauna that are threatened with extinction from Knox, including those plants listed by Lorimer (2004) as Vulnerable, Endangered or Critically Endangered in Knox;
- To protect the important contribution that native vegetation and large trees make to the character and identity of the area.

3.0 Permit requirement

A permit is not required:

- To subdivide land or construct a building or construct or carry out works if there is no:
 - watercourse or
 - water body or
 - drainage line or
 - ^a weed proclaimed under the Catchment and Land Protection Act 1994 or
 - native vegetation other than native grass (in the botanical family Poaceae) or
 - ^a tree trunk with a girth greater than one metre when measured 1.3 metres above ground level

within, or for a radius of ten metres surrounding, the area in which the proposed subdivision, building, works or any associated construction activities are to occur;

- To carry out works for maintenance of a road or utility service for the transmission of water, sewage, gas, electricity, electronic communications or the like, provided that any removal or destruction of native vegetation is the minimum necessary.
- To construct, replace or maintain a fence unless it requires removal, destruction or lopping of native vegetation that is not exempted below.
- To remove, destroy or lop any vegetation that is:
 - Sweet Pittosporum (*Pittosporum undulatum*).
 - Not native vegetation, unless it includes a tree with a girth exceeding one metre when measured at a height of 1.3 metres above ground level^{*}.
 - Dead.

^{*} Note that even environmental weeds such as a Monterey Pine may have landscape or habitat values when they are large, and replacement planting may be required as a condition of permit (perhaps prior to the target tree's removal, destruction or lopping).

- Diseased and has been assessed as being suitable for removal by an authorised officer of the responsible authority[†].
- ^a Within two metres of a dwelling or within two metres of an outbuilding ancillary to a dwelling.
- The minimum amount necessary for the construction, replacement or maintenance of a fence provided that the vegetation is within 1.5 m of a title boundary and does not include removal of any tree trunk with a girth of more than one metre when measured at a height of 1.3 metres above ground level.
- ^a Seedlings or regrowth less than three years old and the land is being maintained for established pasture, crops or garden.
- Woody plants on an existing dam wall.
- Grass species (i.e. in the botanical family Poaceae) that are to be removed, grazed or cut in association with an existing residential or permitted use or part of an existing farming operation.
- Required to be pruned or lopped (but not removed) as part of normal horticultural practice for the species.

4.0 Application requirements

An application for a permit to do nothing other than remove, destroy or lop non-native vegetation (i.e. trees with trunk girths greater than one metre) must be accompanied by a scaled plan of the property that shows:

- Property boundaries;
- The nearest road(s);
- Existing development on the site;
- The location, species, trunk girth and condition of each tree to be removed, destroyed or lopped; and
- The location of any watercourse, wetland, water body or drainage line beneath the crowns of the trees;

and an explanation of:

- The reason(s) for the removal, destruction or lopping; and
- Any proposed actions to compensate for the loss of the tree canopy or other habitat values.

Applications for all other permits under this schedule should be accompanied by a report that considers the impacts of the proposal that may occur within a period of ten years from commencement, on the subject land or elsewhere. The report must:

- (a) Detail all native vegetation, habitat, threatened communities, threatened EVCs, watercourses, water bodies, drainage lines or other features of environmental significance that might be reasonably expected to be affected by the proposal;
- (b) State the population sizes of any indigenous plant species affected by the proposal that are listed in Appendix B of the report by Lorimer (2004) as being Vulnerable, Endangered or Critically Endangered in Knox or more widely, or that were not recognised in that report as being present in Knox;
- (c) Predict the nature and magnitude of the proposal's impacts on the items in (a) and (b) above, together with an indication of the potential for the impacts to turn out worse than those predicted;
- (d) Explain why any adverse effects cannot be avoided or reduced in extent;
- (e) Indicate any proposed actions to compensate for predicted adverse effects;
- (f) Indicate whether the site or its surroundings require protection from bushfire and if so, how this is to be achieved with no, or minimum, adverse environmental impact;

and be accompanied by one or more scaled and dimensioned plans that show:

- Property boundaries;
- The nearest road(s);

Document Revision 1.0.0, 20 October 2004

[†] Council should consider the prospect of additional work that authorised officers may have to undertake.

- Existing development on the site;
- Existing fences;
- The locations of any items mentioned in (a), (b) or (e) above; and
- The location, species, trunk girth and condition of each tree to be removed, destroyed or lopped, excluding trees whose trunk girth is less than one metre.

5.0 Decision guidelines

Before deciding on an application, the responsible authority must consider:

- The degree to which the environmental objective set out in Section 2.0 above is expected to be achieved, and the degree of confidence in that expectation.
- Potential impacts on the Dandenong Ranges National Park or on Sites 1-100 identified in Volume 2 of *'Sites of Biological Significance in Knox'* by G.S. Lorimer, 2004.
- Potential impacts on weeds, including by soil disturbance or due to runoff.
- Potential environmental impacts due to changes in hydrology of soil, watercourses, water bodies, wetlands or drainage lines.
- The expected change in fire risk that would result from the proposal;
- The possible ecological damage that may be done to native vegetation by any increase in fire prevention work that would have to be done as a result of the proposal.
- The conservation requirements of any threatened species, community or EVC on the site.
- Whether there are statutory requirements under the *Environment Protection and Biodiversity Conservation Act 1999* or the *Flora and Fauna Guarantee Act 1988*.
- Conformity with the Port Phillip and Westernport Native Vegetation Plan.
- The results of any flora or fauna survey and assessment of the biological values of the area and consideration of whether the survey and assessment has been adequately completed under appropriate seasonal conditions, sufficiently recently and by suitably qualified personnel.
- The reason for the proposed actions and the practicality of any alternative options that would incur less adverse effects on vegetation, hydrology or other habitat components.
- Whether appropriate environmental restitution is proposed and the likelihood of any proposed restitution measures to be successful over a ten year span.
- If the proposal threatens the existence of a plant species that the responsible authority regards as rare or threatened in Knox, the benefit of requiring as a permit condition that the plant be relocated to somewhere more secure.
- Whether the proposal may reduce the prospects or opportunities for future ecological restoration.
- The conservation and enhancement of the area's landscape values.
- The usefulness of erecting a fence (temporary or permanent) to protect retained vegetation or aquatic environments from movements of machinery, vehicles or heavy foot traffic associated with the proposal.
- The usefulness of installing a drain uphill from environmentally significant areas to intercept and divert runoff or subsoil water that may otherwise cause harm.
- For subdivision applications, the usefulness of imposing conditions on lot sizes, lot boundaries, road network, open space, building envelopes, drainage or effluent disposal sites to better meet the environmental objective set out in Section 2.0 above.
- The views of any appropriate committee or authority.

7.0 References

- *Sites of Biological Significance in Knox*' by G.S. Lorimer, published by Knox City Council, 2004, and references cited therein.
- *'Port Phillip and Westernport Native Vegetation Plan'*, published by the Department of Sustainability & Environment 2004 and updated from time to time.

- 'Freshwater Ecosystems: Biodiversity Management Issues', brochures published by the Department of Natural Resources & Environment, 2001, or as updated from time to time.
- 'Advisory List of Rare or Threatened Plants in Victoria 2003' and its successors, published by the Department of Sustainability & Environment.
- 'Advisory List of Threatened Vertebrate Fauna in Victoria 2003' and its successors, published by the Department of Sustainability & Environment.
- Lists of regionally significant fauna in 'Melbourne Area District 2 Review Descriptive Report', published by the Land Conservation Council (1991).
- Schedules 2 and 3 to the Flora and Fauna Guarantee Act 1988.

Appendix H – Suggested VPO Schedule

The following is a suggested replacement for the existing schedule VPO3 in the Knox Planning Scheme. It should be considered in conjunction with the basic provisions for the Vegetation Protection Overlay that appear as Clause 42.02 of the scheme. Note that for parcels of land measuring at least 0.4 ha, there are additional requirements under Clause 52.17, which provides basic protection for the full range of native vegetation other than Bracken.

SCHEDULE TO THE VEGETATION PROTECTION OVERLAY

Shown on the planning scheme map as VPO.

CANOPY TREE PROTECTION

1.0 Statement of nature and significance of vegetation to be protected

According to the report, '*Sites of Biological Significance in Knox*' by G.S. Lorimer (published by Knox City Council, 2004), the density and types of trees in the areas covered by this schedule:

- Fulfil basic habitat needs for some native fauna, such as parrots;
- Display rudiments of pre-European vegetation communities that are now all regionally or nationally threatened; and
- In some cases, are likely to act as ecological corridors or 'stepping stones' for movement of native fauna around Knox.

The report just cited should be consulted for details of the attributes that make vegetation at each site significant.

The presence of the vegetation and the associated wildlife (particularly birds) adds to the amenity and character of the areas.

Trees are generally the most important part of the vegetation, but in some areas, shrubs provide additional habitat for birds, butterflies and other fauna.

2.0 Vegetation protection objective to be achieved

- To protect the continuity of tree cover, with particular emphasis on indigenous species and large trees.
- To improve the continuity of tree cover over time by replacing trees that must be removed with a larger number of replacements.
- To select replacement trees with a preference for species that help to re-establish the likely pre-European tree canopy composition of the neighbourhood, to the extent that this is consistent with the area's landscape and arboricultural constraints.
- To encourage planting of shrubs that are believed to provide habitat for small native birds in the area, not necessarily just trees.
- To protect the important contribution that trees make to the character and identity of the areas.

3.0 Permit requirement

The following exemptions apply only to this schedule and do not remove any requirement for a permit that may arise under Clause 52.17.

A permit is not required to lop vegetation if the lopping is required as part of normal horticultural practice for the species.

- A permit is not required to remove, destroy or lop any vegetation that:
- Is Sweet Pittosporum (*Pittosporum undulatum*).

- Does not include any tree with a trunk whose girth is more than one metre when measured at a height of 1.3 metres above ground level.
- Has a height less than eight metres.
- Is dead.
- Is diseased and has been assessed as being suitable for removal by an authorised officer of the responsible authority.*
- Is within two metres of a dwelling or within two metres of an outbuilding ancillary to a dwelling.
- Is the minimum amount necessary to maintain utility services for the transmission of water, sewage, gas, electricity, electronic communications or the like.

4.0 Application requirements

An application for a permit must be accompanied by a scaled plan of the property that shows:

• The location, species, trunk girth and condition of each tree to be removed, destroyed or lopped

and a written statement that provides:

- The reason(s) why the removal, destruction or lopping cannot be avoided or reduced in extent; and
- Any proposed actions to compensate for the loss of the tree canopy or other habitat values, including the species and numbers of any trees or shrubs to be established or maintained.

5.0 Decision guidelines

Before deciding on an application, the responsible authority must consider:

- The degree to which the vegetation protection objective set out in Section 2.0 above is expected to be achieved, and the degree of confidence in that expectation.
- The reason for the proposed actions and the practicality of any alternative options that would incur less adverse effects on vegetation and the habitat that it provides.
- The adequacy of any proposed restitution measures (such as establishing or retaining trees or shrubs) and the likelihood that they will be successful over a ten year span.

6.0 References

• *Sites of Biological Significance in Knox'* by G.S. Lorimer, published by Knox City Council, 2004, and references cited therein.

^{*} Council needs to consider the additional work that this may impose.

Document Revision 1.0.0, 20 October 2004

Glossary and Abbreviations

Alluvial	An adjective referring to soil deposited by a stream or floodwater.
Biodiversity	The range of flora, fauna, ecological communities and genetic material.
Biogeography	The study of the geographical distributions of different types of flora and fauna, and the geographical factors which influence those distributions.
Conservation Significance	This term has special meaning under Victoria's Native Vegetation Framework (NRE 2002a), in which it is defined by Table 5 (p.53) on the basis of such matters as the conservation status of the EVC present, the Habitat Score and the presence of listed wetlands, National Estate values or rare or threatened species.
DSE	Department of Sustainability & Environment
EVC	'Ecological Vegetation Class', a type of vegetation or wetland recognised in a statewide system of classification developed by the Department of Sustainability and Environment. An EVC may include multiple vegetation 'communities' or 'associations' with different mixtures of species, but similar ecological and topographic conditions.
Habitat Score	A measure of vegetation condition or quality within any area that is fairly uniform in its ecological characteristics, taking into account tree density, diversity of plant sizes and forms, weediness, degree of natural regeneration of flora, organic litter cover and presence of logs. It is a number in the range 0-1. The procedure for determining it is described by Parkes <i>et al.</i> (2003)
Herb	In botanical terminology (and hence this report), a plant without any woody parts; e.g. an orchid, lily, rush or grass.
Invertebrate	Fauna without backbones, such as insects, spiders, crustaceans and molluscs.
LPPF	Local Planning Policy Framework, a section within any planning scheme in Victoria.
MSS	Muncipal Strategic Statement, a section in a planning scheme where the Council describes its stategic basis and framework for town planning.
Perennial	Adjective. A perennial stream or water body is one that does not normally dry out.
Precautionary Principle	The principle that (as written in the National Strategy for the Conservation of Australia's Biological Diversity) 'Lack of full knowledge should not be an excuse for postponing action to conserve biological diversity, or as defined more generally in the Intergovernmental Agreement on the Environment: 'Where there are threats of serious or reversible damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation. In the application of the precautionary principle, public and private decisions should be guided by: (i) careful evaluation to avoid, wherever practicable, serious or irreversible damage to the environment; and (ii) an assessment of the risk-weighted consequences of various options.' This also appears (with slight re-wording) in Section 1C of the Victorian Environment Protection Act 1970.
Riparian	An adjective meaning 'occurring beside a stream'. A riparian zone occurs along a stream and is directly influenced by the flowing water. A subriparian zone may occur adjacent to this.
SPPF	State Planning Policy Framework, a section within any planning scheme in Victoria.
Vertebrate	Fauna with backbones, including mammals, birds, amphibians, reptiles and fish.
VPPs	Victoria Planning Provisions, on which all Victorian planning schemes are based.